These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 30979013

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications.
    Rocha VAL, de Castilho LVA, de Castro RPV, Teixeira DB, Magalhães AV, Gomez JGC, Freire DMG.
    Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation.
    Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA.
    Colloids Surf B Biointerfaces; 2010 Dec 01; 81(2):397-405. PubMed ID: 20732795
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.
    Varjani SJ, Upasani VN.
    Bioresour Technol; 2016 Nov 01; 220():175-182. PubMed ID: 27567478
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials.
    Rahman KS, Rahman TJ, McClean S, Marchant R, Banat IM.
    Biotechnol Prog; 2002 Nov 01; 18(6):1277-81. PubMed ID: 12467462
    [Abstract] [Full Text] [Related]

  • 17. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T, Zauter R, Tulke H, Leuchtle B, Li WJ, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM.
    Microb Cell Fact; 2017 Dec 14; 16(1):225. PubMed ID: 29241456
    [Abstract] [Full Text] [Related]

  • 18. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste.
    Nitschke M, Costa SG, Contiero J.
    Appl Biochem Biotechnol; 2010 Apr 14; 160(7):2066-74. PubMed ID: 19649781
    [Abstract] [Full Text] [Related]

  • 19. Cytotoxic effects of mono- and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells.
    Rahimi K, Lotfabad TB, Jabeen F, Mohammad Ganji S.
    Colloids Surf B Biointerfaces; 2019 Sep 01; 181():943-952. PubMed ID: 31382344
    [Abstract] [Full Text] [Related]

  • 20. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.
    Zhao F, Zhou J, Han S, Ma F, Zhang Y, Zhang J.
    World J Microbiol Biotechnol; 2016 Apr 01; 32(4):54. PubMed ID: 26925616
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.