These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


319 related items for PubMed ID: 30982194

  • 1. Responses of carbonic anhydrases and Rubisco to abrupt CO2 changes of seawater in two marine diatoms.
    Zeng X, Jin P, Zou D, Liu Y, Xia J.
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [Abstract] [Full Text] [Related]

  • 2. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR, Kraepiel AM, Morel FM.
    Nature; 2000 Oct 26; 407(6807):996-9. PubMed ID: 11069177
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Pyrenoid-core CO2-evolving machinery is essential for diatom photosynthesis in elevated CO2.
    Shimakawa G, Okuyama A, Harada H, Nakagaito S, Toyoshima Y, Nagata K, Matsuda Y.
    Plant Physiol; 2023 Nov 22; 193(4):2298-2305. PubMed ID: 37625790
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Cadmium-containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii.
    Alterio V, Langella E, De Simone G, Monti SM.
    Mar Drugs; 2015 Mar 25; 13(4):1688-97. PubMed ID: 25815892
    [Abstract] [Full Text] [Related]

  • 10. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration.
    Matsuda Y, Nakajima K, Tachibana M.
    Photosynth Res; 2011 Sep 25; 109(1-3):191-203. PubMed ID: 21287273
    [Abstract] [Full Text] [Related]

  • 11. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN, Hopkinson BM.
    J Exp Bot; 2017 Jun 01; 68(14):3751-3762. PubMed ID: 28645158
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The physiology and genetics of CO2 concentrating mechanisms in model diatoms.
    Hopkinson BM, Dupont CL, Matsuda Y.
    Curr Opin Plant Biol; 2016 Jun 01; 31():51-7. PubMed ID: 27055267
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effects of HCO3- and CO2 conversion rates on carbon assimilation strategies in marine microalgae: Implication by stable carbon isotope analysis of fatty acids.
    Fan W, Liu Y, Xu X, Dong X, Wang H.
    Plant Physiol Biochem; 2024 Apr 01; 209():108530. PubMed ID: 38520966
    [Abstract] [Full Text] [Related]

  • 17. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms.
    Young JN, Heureux AM, Sharwood RE, Rickaby RE, Morel FM, Whitney SM.
    J Exp Bot; 2016 May 01; 67(11):3445-56. PubMed ID: 27129950
    [Abstract] [Full Text] [Related]

  • 18. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana.
    Clement R, Dimnet L, Maberly SC, Gontero B.
    New Phytol; 2016 Mar 01; 209(4):1417-27. PubMed ID: 26529678
    [Abstract] [Full Text] [Related]

  • 19. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms.
    Tsuji Y, Mahardika A, Matsuda Y.
    J Exp Bot; 2017 Jun 01; 68(14):3949-3958. PubMed ID: 28398591
    [Abstract] [Full Text] [Related]

  • 20. Carbon concentrating mechanisms in eukaryotic marine phytoplankton.
    Reinfelder JR.
    Ann Rev Mar Sci; 2011 Jun 01; 3():291-315. PubMed ID: 21329207
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.