These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
229 related items for PubMed ID: 30988376
21. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Roisin Y, Delfosse P, Calusinska M. BMC Genomics; 2017 Sep 01; 18(1):681. PubMed ID: 28863779 [Abstract] [Full Text] [Related]
22. Cloning, Production and Characterization of a Glycoside Hydrolase Family 7 Enzyme from the Gut Microbiota of the Termite Coptotermes curvignathus. Woon JS, King PJH, Mackeen MM, Mahadi NM, Wan Seman WMK, Broughton WJ, Abdul Murad AM, Abu Bakar FD. Mol Biotechnol; 2017 Jul 01; 59(7):271-283. PubMed ID: 28573450 [Abstract] [Full Text] [Related]
23. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Du N, Shi L, Yuan Y, Sun J, Shu S, Guo S. Microbiol Res; 2017 Sep 01; 202():1-10. PubMed ID: 28647117 [Abstract] [Full Text] [Related]
24. Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4. Soni R, Nanjani S, Keharia H. Genomics; 2021 Jan 01; 113(1 Pt 2):861-873. PubMed ID: 33096257 [Abstract] [Full Text] [Related]
26. Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. Do TH, Nguyen TT, Nguyen TN, Le QG, Nguyen C, Kimura K, Truong NH. J Biosci Bioeng; 2014 Dec 01; 118(6):665-71. PubMed ID: 24928651 [Abstract] [Full Text] [Related]
30. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. Liu N, Li H, Chevrette MG, Zhang L, Cao L, Zhou H, Zhou X, Zhou Z, Pope PB, Currie CR, Huang Y, Wang Q. ISME J; 2019 Jan 01; 13(1):104-117. PubMed ID: 30116044 [Abstract] [Full Text] [Related]
31. An endophytic strain of genus Paenibacillus isolated from the fruits of Noni (Morinda citrifolia L.) has antagonistic activity against a Noni's pathogenic strain of genus Aspergillus. Liu Y, Bai F, Li T, Yan H. Microb Pathog; 2018 Dec 01; 125():158-163. PubMed ID: 30223005 [Abstract] [Full Text] [Related]
32. Algicidal interaction between Paenibacillus polymyxa MEZ6 and microalgae. Zhao N, Yi L, Ren S, Yin Q, Xiang W, Zhang X, Xie B. J Appl Microbiol; 2022 Aug 01; 133(2):646-655. PubMed ID: 35462459 [Abstract] [Full Text] [Related]
35. Two different restriction-modification systems for degrading exogenous DNA in Paenibacillus polymyxa. Shen M, Chen Z, Mao X, Wang L, Liang J, Huo Q, Yin X, Qiu J, Sun D. Biochem Biophys Res Commun; 2018 Oct 12; 504(4):927-932. PubMed ID: 30224061 [Abstract] [Full Text] [Related]
36. Enhancement of antibacterial and growth-promoting effects of Paenibacillus polymyxa by optimizing its fermentation process. Liu S, Liu H, Zhou L, Cheng Z, Wan J, Pan Y, Xu G, Huang F, Wang M, Xiong Y, Hu G. J Appl Microbiol; 2022 Nov 12; 133(5):2954-2965. PubMed ID: 35938320 [Abstract] [Full Text] [Related]
37. Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol. Xie NZ, Li JX, Song LF, Hou JF, Guo L, Du QS, Yu B, Huang RB. J Biotechnol; 2015 Feb 10; 195():72-3. PubMed ID: 25450636 [Abstract] [Full Text] [Related]