These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 30995136

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Changes in simple spike activity of some Purkinje cells in the oculomotor vermis during saccade adaptation are appropriate to participate in motor learning.
    Kojima Y, Soetedjo R, Fuchs AF.
    J Neurosci; 2010 Mar 10; 30(10):3715-27. PubMed ID: 20220005
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Complex spike activity signals the direction and size of dysmetric saccade errors.
    Soetedjo R, Kojima Y, Fuchs A.
    Prog Brain Res; 2008 Mar 10; 171():153-9. PubMed ID: 18718294
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Short-term adaptation of electrically induced saccades in monkey superior colliculus.
    Melis BJ, van Gisbergen JA.
    J Neurophysiol; 1996 Sep 10; 76(3):1744-58. PubMed ID: 8890289
    [Abstract] [Full Text] [Related]

  • 8. Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades.
    Soetedjo R, Fuchs AF.
    J Neurosci; 2006 Jul 19; 26(29):7741-55. PubMed ID: 16855102
    [Abstract] [Full Text] [Related]

  • 9. Saccade adaptation as a model of learning in voluntary movements.
    Iwamoto Y, Kaku Y.
    Exp Brain Res; 2010 Jul 19; 204(2):145-62. PubMed ID: 20544185
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Change in sensitivity to visual error in superior colliculus during saccade adaptation.
    Kojima Y, Soetedjo R.
    Sci Rep; 2017 Aug 29; 7(1):9566. PubMed ID: 28852092
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Functional adaptation of reactive saccades in humans: a PET study.
    Desmurget M, Pélisson D, Grethe JS, Alexander GE, Urquizar C, Prablanc C, Grafton ST.
    Exp Brain Res; 2000 May 29; 132(2):243-59. PubMed ID: 10853949
    [Abstract] [Full Text] [Related]

  • 15. Cerebellar control of saccadic eye movements: its neural mechanisms and pathways.
    Noda H.
    Jpn J Physiol; 1991 May 29; 41(3):351-68. PubMed ID: 1960885
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The locus of motor activity in the superior colliculus of the rhesus monkey is unaltered during saccadic adaptation.
    Quessy S, Quinet J, Freedman EG.
    J Neurosci; 2010 Oct 20; 30(42):14235-44. PubMed ID: 20962244
    [Abstract] [Full Text] [Related]

  • 18. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning.
    Catz N, Dicke PW, Thier P.
    Curr Biol; 2005 Dec 20; 15(24):2179-89. PubMed ID: 16360681
    [Abstract] [Full Text] [Related]

  • 19. Activity of neurons in monkey superior colliculus during interrupted saccades.
    Munoz DP, Waitzman DM, Wurtz RH.
    J Neurophysiol; 1996 Jun 20; 75(6):2562-80. PubMed ID: 8793764
    [Abstract] [Full Text] [Related]

  • 20. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey.
    Ohtsuka K, Noda H.
    J Neurophysiol; 1995 Nov 20; 74(5):1828-40. PubMed ID: 8592177
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.