These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
212 related items for PubMed ID: 3099778
1. The reversible Ca2+-induced permeabilization of rat liver mitochondria. Al-Nasser I, Crompton M. Biochem J; 1986 Oct 01; 239(1):19-29. PubMed ID: 3099778 [Abstract] [Full Text] [Related]
2. The entrapment of the Ca2+ indicator arsenazo III in the matrix space of rat liver mitochondria by permeabilization and resealing. Na+-dependent and -independent effluxes of Ca2+ in arsenazo III-loaded mitochondria. Al-Nasser I, Crompton M. Biochem J; 1986 Oct 01; 239(1):31-40. PubMed ID: 3800984 [Abstract] [Full Text] [Related]
3. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Crompton M, Costi A, Hayat L. Biochem J; 1987 Aug 01; 245(3):915-8. PubMed ID: 3117053 [Abstract] [Full Text] [Related]
4. Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Crompton M, Costi A. Eur J Biochem; 1988 Dec 15; 178(2):489-501. PubMed ID: 2850179 [Abstract] [Full Text] [Related]
8. A heart mitochondrial Ca2(+)-dependent pore of possible relevance to re-perfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states. Crompton M, Costi A. Biochem J; 1990 Feb 15; 266(1):33-9. PubMed ID: 2106875 [Abstract] [Full Text] [Related]
9. Kinetic analysis of the mitochondrial permeability transition. Massari S. J Biol Chem; 1996 Dec 13; 271(50):31942-8. PubMed ID: 8943240 [Abstract] [Full Text] [Related]
11. EGTA inhibits reverse uniport-dependent Ca2+ release from uncoupled mitochondria. Possible regulation of the Ca2+ uniporter by a Ca2+ binding site on the cytoplasmic side of the inner membrane. Igbavboa U, Pfeiffer DR. J Biol Chem; 1988 Jan 25; 263(3):1405-12. PubMed ID: 2447088 [Abstract] [Full Text] [Related]
12. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Crompton M, Ellinger H, Costi A. Biochem J; 1988 Oct 01; 255(1):357-60. PubMed ID: 3196322 [Abstract] [Full Text] [Related]
13. 3,5,3'-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation. Castilho RF, Kowaltowski AJ, Vercesi AE. Arch Biochem Biophys; 1998 Jun 01; 354(1):151-7. PubMed ID: 9633610 [Abstract] [Full Text] [Related]
14. The mechanism of acute cytotoxicity of triethylphosphine gold(I) complexes. III. Chlorotriethylphosphine gold(I)-induced alterations in isolated rat liver mitochondrial function. Hoke GD, Rush GF, Mirabelli CK. Toxicol Appl Pharmacol; 1989 Jun 01; 99(1):50-60. PubMed ID: 2471292 [Abstract] [Full Text] [Related]
18. Structural modifications of the permeability transition pore complex in resealed mitochondria induced by matrix-entrapped disaccharides. Ricchelli F, Beghetto C, Gobbo S, Tognon G, Moretto V, Crisma M. Arch Biochem Biophys; 2003 Feb 01; 410(1):155-60. PubMed ID: 12559988 [Abstract] [Full Text] [Related]
19. Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Bernardi P, Azzone GF. Eur J Biochem; 1983 Aug 01; 134(2):377-83. PubMed ID: 6191982 [Abstract] [Full Text] [Related]
20. Role of mitochondrial Ca2+ in the oxidative stress-induced dissipation of the mitochondrial membrane potential. Studies in isolated proximal tubular cells using the nephrotoxin 1,2-dichlorovinyl-L-cysteine. van de Water B, Zoeteweij JP, de Bont HJ, Mulder GJ, Nagelkerke JF. J Biol Chem; 1994 May 20; 269(20):14546-52. PubMed ID: 8182062 [Abstract] [Full Text] [Related] Page: [Next] [New Search]