These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


242 related items for PubMed ID: 30998125

  • 1. Effects of short-term sprint interval and moderate-intensity continuous training on liver fat content, lipoprotein profile, and substrate uptake: a randomized trial.
    Motiani KK, Savolainen AM, Toivanen J, Eskelinen JJ, Yli-Karjanmaa M, Virtanen KA, Saunavaara V, Heiskanen MA, Parkkola R, Haaparanta-Solin M, Solin O, Savisto N, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC.
    J Appl Physiol (1985); 2019 Jun 01; 126(6):1756-1768. PubMed ID: 30998125
    [Abstract] [Full Text] [Related]

  • 2. Increased insulin-stimulated glucose uptake in both leg and arm muscles after sprint interval and moderate-intensity training in subjects with type 2 diabetes or prediabetes.
    Sjöros TJ, Heiskanen MA, Motiani KK, Löyttyniemi E, Eskelinen JJ, Virtanen KA, Savisto NJ, Solin O, Hannukainen JC, Kalliokoski KK.
    Scand J Med Sci Sports; 2018 Jan 01; 28(1):77-87. PubMed ID: 28295686
    [Abstract] [Full Text] [Related]

  • 3. Sprint interval training decreases left-ventricular glucose uptake compared to moderate-intensity continuous training in subjects with type 2 diabetes or prediabetes.
    Heiskanen MA, Sjöros TJ, Heinonen IHA, Löyttyniemi E, Koivumäki M, Motiani KK, Eskelinen JJ, Virtanen KA, Knuuti J, Hannukainen JC, Kalliokoski KK.
    Sci Rep; 2017 Sep 05; 7(1):10531. PubMed ID: 28874821
    [Abstract] [Full Text] [Related]

  • 4. Two weeks of moderate-intensity continuous training, but not high-intensity interval training, increases insulin-stimulated intestinal glucose uptake.
    Motiani KK, Savolainen AM, Eskelinen JJ, Toivanen J, Ishizu T, Yli-Karjanmaa M, Virtanen KA, Parkkola R, Kapanen J, Grönroos TJ, Haaparanta-Solin M, Solin O, Savisto N, Ahotupa M, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC.
    J Appl Physiol (1985); 2017 May 01; 122(5):1188-1197. PubMed ID: 28183816
    [Abstract] [Full Text] [Related]

  • 5. Short-term interval training alters brain glucose metabolism in subjects with insulin resistance.
    Honkala SM, Johansson J, Motiani KK, Eskelinen JJ, Virtanen KA, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC.
    J Cereb Blood Flow Metab; 2018 Oct 01; 38(10):1828-1838. PubMed ID: 28959911
    [Abstract] [Full Text] [Related]

  • 6. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial.
    Heiskanen MA, Motiani KK, Mari A, Saunavaara V, Eskelinen JJ, Virtanen KA, Koivumäki M, Löyttyniemi E, Nuutila P, Kalliokoski KK, Hannukainen JC.
    Diabetologia; 2018 Aug 01; 61(8):1817-1828. PubMed ID: 29717337
    [Abstract] [Full Text] [Related]

  • 7. Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men.
    Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe A, Barker TA, Wagenmakers AJ.
    J Physiol; 2016 Apr 15; 594(8):2307-21. PubMed ID: 25645978
    [Abstract] [Full Text] [Related]

  • 8. The Effect of High-Intensity Interval Training on Physical Parameters, Metabolomic Indexes and Serum Ficolin-3 Levels in Patients with Prediabetes and Type 2 Diabetes.
    Liu X, Wang G.
    Exp Clin Endocrinol Diabetes; 2021 Oct 15; 129(10):740-749. PubMed ID: 31931532
    [Abstract] [Full Text] [Related]

  • 9. Twelve weeks of low volume sprint interval training improves cardio-metabolic health outcomes in overweight females.
    Sun S, Zhang H, Kong Z, Shi Q, Tong TK, Nie J.
    J Sports Sci; 2019 Jun 15; 37(11):1257-1264. PubMed ID: 30563431
    [Abstract] [Full Text] [Related]

  • 10. Intramyocellular lipid accumulation after sprint interval and moderate-intensity continuous training in healthy and diabetic subjects.
    Sjöros T, Saunavaara V, Löyttyniemi E, Koivumäki M, Heinonen IHA, Eskelinen JJ, Virtanen KA, Hannukainen JC, Kalliokoski KK.
    Physiol Rep; 2019 Feb 15; 7(3):e13980. PubMed ID: 30740933
    [Abstract] [Full Text] [Related]

  • 11. Exercise Training Reduces Intrathoracic Fat Regardless of Defective Glucose Tolerance.
    Honkala SM, Motiani KK, Eskelinen JJ, Savolainen A, Saunavaara V, Virtanen KA, Löyttyniemi E, Kapanen J, Knuuti J, Kalliokoski KK, Hannukainen JC.
    Med Sci Sports Exerc; 2017 Jul 15; 49(7):1313-1322. PubMed ID: 28628064
    [Abstract] [Full Text] [Related]

  • 12. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity.
    Keating SE, Johnson NA, Mielke GI, Coombes JS.
    Obes Rev; 2017 Aug 15; 18(8):943-964. PubMed ID: 28513103
    [Abstract] [Full Text] [Related]

  • 13. Changes in brachial artery endothelial function and resting diameter with moderate-intensity continuous but not sprint interval training in sedentary men.
    Shenouda N, Gillen JB, Gibala MJ, MacDonald MJ.
    J Appl Physiol (1985); 2017 Oct 01; 123(4):773-780. PubMed ID: 28546466
    [Abstract] [Full Text] [Related]

  • 14. Left ventricular vascular and metabolic adaptations to high-intensity interval and moderate intensity continuous training: a randomized trial in healthy middle-aged men.
    Eskelinen JJ, Heinonen I, Löyttyniemi E, Hakala J, Heiskanen MA, Motiani KK, Virtanen K, Pärkkä JP, Knuuti J, Hannukainen JC, Kalliokoski KK.
    J Physiol; 2016 Dec 01; 594(23):7127-7140. PubMed ID: 27500951
    [Abstract] [Full Text] [Related]

  • 15. A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients.
    Ruffino JS, Songsorn P, Haggett M, Edmonds D, Robinson AM, Thompson D, Vollaard NB.
    Appl Physiol Nutr Metab; 2017 Feb 01; 42(2):202-208. PubMed ID: 28121184
    [Abstract] [Full Text] [Related]

  • 16. Human skeletal muscle fiber type-specific responses to sprint interval and moderate-intensity continuous exercise: acute and training-induced changes.
    Skelly LE, Gillen JB, Frankish BP, MacInnis MJ, Godkin FE, Tarnopolsky MA, Murphy RM, Gibala MJ.
    J Appl Physiol (1985); 2021 Apr 01; 130(4):1001-1014. PubMed ID: 33630680
    [Abstract] [Full Text] [Related]

  • 17. Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males.
    Shepherd SO, Cocks M, Meikle PJ, Mellett NA, Ranasinghe AM, Barker TA, Wagenmakers AJM, Shaw CS.
    Int J Obes (Lond); 2017 Dec 01; 41(12):1745-1754. PubMed ID: 28736444
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Right ventricular metabolic adaptations to high-intensity interval and moderate-intensity continuous training in healthy middle-aged men.
    Heiskanen MA, Leskinen T, Heinonen IH, Löyttyniemi E, Eskelinen JJ, Virtanen K, Hannukainen JC, Kalliokoski KK.
    Am J Physiol Heart Circ Physiol; 2016 Sep 01; 311(3):H667-75. PubMed ID: 27448554
    [Abstract] [Full Text] [Related]

  • 20. Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes.
    Robinson E, Durrer C, Simtchouk S, Jung ME, Bourne JE, Voth E, Little JP.
    J Appl Physiol (1985); 2015 Sep 01; 119(5):508-16. PubMed ID: 26139217
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.