These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 3099844

  • 61. Effect of acyl chain composition on salt-induced lamellar to inverted hexagonal phase transitions in cardiolipin.
    Sankaram MB, Powell GL, Marsh D.
    Biochim Biophys Acta; 1989 Apr 28; 980(3):389-92. PubMed ID: 2713413
    [Abstract] [Full Text] [Related]

  • 62. The interaction of adriamycin with cardiolipin in model and rat liver mitochondrial membranes.
    Nicolay K, Timmers RJ, Spoelstra E, Van der Neut R, Fok JJ, Huigen YM, Verkleij AJ, De Kruijff B.
    Biochim Biophys Acta; 1984 Dec 05; 778(2):359-71. PubMed ID: 6498197
    [Abstract] [Full Text] [Related]

  • 63. Calcium-induced aggregation and fusion of mixed phosphatidylcholine-phosphatidic acid vesicles as studied by 31P NMR.
    Koter M, de Kruijff B, van Deenen LL.
    Biochim Biophys Acta; 1978 Dec 19; 514(2):255-63. PubMed ID: 737172
    [Abstract] [Full Text] [Related]

  • 64. Membrane curvature induces cardiolipin sorting.
    Beltrán-Heredia E, Tsai FC, Salinas-Almaguer S, Cao FJ, Bassereau P, Monroy F.
    Commun Biol; 2019 Dec 19; 2():225. PubMed ID: 31240263
    [Abstract] [Full Text] [Related]

  • 65. Adriamycin inhibits the formation of non-bilayer lipid structures in cardiolipin-containing model membranes.
    Goormaghtigh E, Vandenbranden M, Ruysschaert JM, De Kruijff B.
    Biochim Biophys Acta; 1982 Feb 23; 685(2):137-43. PubMed ID: 6277379
    [Abstract] [Full Text] [Related]

  • 66. The entrapment of the Ca2+ indicator arsenazo III in the matrix space of rat liver mitochondria by permeabilization and resealing. Na+-dependent and -independent effluxes of Ca2+ in arsenazo III-loaded mitochondria.
    Al-Nasser I, Crompton M.
    Biochem J; 1986 Oct 01; 239(1):31-40. PubMed ID: 3800984
    [Abstract] [Full Text] [Related]

  • 67. A comparative model membrane study on structural effects of membrane-active positively charged anti-tumor drugs.
    Nicolay K, Sautereau AM, Tocanne JF, Brasseur R, Huart P, Ruysschaert JM, de Kruijff B.
    Biochim Biophys Acta; 1988 May 24; 940(2):197-208. PubMed ID: 3163502
    [Abstract] [Full Text] [Related]

  • 68. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease.
    Paradies G, Petrosillo G, Paradies V, Ruggiero FM.
    Cell Calcium; 2009 Jun 24; 45(6):643-50. PubMed ID: 19368971
    [Abstract] [Full Text] [Related]

  • 69. Regulatory aspects of mitochondrial phospholipase A2: correlation of hydrolysis rates with substrate configuration as evidenced by 31P-NMR.
    Lenting HB, Nicolay K, van den Bosch H.
    Biochim Biophys Acta; 1988 Feb 19; 958(3):405-15. PubMed ID: 3342248
    [Abstract] [Full Text] [Related]

  • 70. Cytochrome c produces pores in cardiolipin-containing planar bilayer lipid membranes in the presence of hydrogen peroxide.
    Puchkov MN, Vassarais RA, Korepanova EA, Osipov AN.
    Biochim Biophys Acta; 2013 Feb 19; 1828(2):208-12. PubMed ID: 23085196
    [Abstract] [Full Text] [Related]

  • 71. Cytochrome c specifically induces non-bilayer structures in cardiolipin-containing model membranes.
    de Kruijff B, Cullis PR.
    Biochim Biophys Acta; 1980 Nov 18; 602(3):477-90. PubMed ID: 6254562
    [Abstract] [Full Text] [Related]

  • 72. Melatonin inhibits cardiolipin peroxidation in mitochondria and prevents the mitochondrial permeability transition and cytochrome c release.
    Petrosillo G, Moro N, Ruggiero FM, Paradies G.
    Free Radic Biol Med; 2009 Oct 01; 47(7):969-74. PubMed ID: 19577639
    [Abstract] [Full Text] [Related]

  • 73. Movement of calcium through artificial lipid membranes and the effects of ionophores.
    Hyono A, Hendriks T, Daemen FJ, Bonting SL.
    Biochim Biophys Acta; 1975 Apr 21; 389(1):34-46. PubMed ID: 1095059
    [Abstract] [Full Text] [Related]

  • 74. Membrane lytic activity of antibacterial ionenes, critical role of phosphatidylcholine (PC) and cardiolipin (CL).
    Kozon-Markiewicz D, Kopiasz RJ, Głusiec M, Łukasiak A, Bednarczyk P, Jańczewski D.
    Colloids Surf B Biointerfaces; 2023 Sep 21; 229():113480. PubMed ID: 37536168
    [Abstract] [Full Text] [Related]

  • 75. Förster Resonance Energy Transfer Study of Cytochrome c-Lipid Interactions.
    Gorbenko GP, Trusova V, Molotkovsky JG.
    J Fluoresc; 2018 Jan 21; 28(1):79-88. PubMed ID: 28879486
    [Abstract] [Full Text] [Related]

  • 76. Vesicle-micelle structural transition of phosphatidylcholine bilayers and Triton X-100.
    De la Maza A, Parra JL.
    Biochem J; 1994 Nov 01; 303 ( Pt 3)(Pt 3):907-14. PubMed ID: 7980461
    [Abstract] [Full Text] [Related]

  • 77. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. II. Preferential interaction of cardiolipin with specific molecular species of phospholipid.
    Ohki K, Goto M, Nozawa Y.
    Biochim Biophys Acta; 1984 Feb 15; 769(3):563-70. PubMed ID: 6421321
    [Abstract] [Full Text] [Related]

  • 78. Ca2+-induced phosphatidylcholine vesicle aggregation in the presence of ferricyanide.
    Bakás LS, Disalvo EA.
    Biochim Biophys Acta; 1988 Apr 07; 939(2):295-304. PubMed ID: 3128326
    [Abstract] [Full Text] [Related]

  • 79. Interaction of Ca2+ with cardiolipin-containing liposomes and its inhibition by adriamycin.
    Brenza JM, Neagle CE, Sokolove PM.
    Biochem Pharmacol; 1985 Dec 15; 34(24):4291-8. PubMed ID: 4074389
    [Abstract] [Full Text] [Related]

  • 80. Atomistic insights into cardiolipin binding sites of cytochrome c oxidase.
    Malkamäki A, Sharma V.
    Biochim Biophys Acta Bioenerg; 2019 Mar 01; 1860(3):224-232. PubMed ID: 30414931
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.