These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
668 related items for PubMed ID: 30999115
21. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes. Shalumon KT, Lai GJ, Chen CH, Chen JP. ACS Appl Mater Interfaces; 2015 Sep 30; 7(38):21170-81. PubMed ID: 26355766 [Abstract] [Full Text] [Related]
24. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Mao L, Xia L, Chang J, Liu J, Jiang L, Wu C, Fang B. Acta Biomater; 2017 Oct 01; 61():217-232. PubMed ID: 28807800 [Abstract] [Full Text] [Related]
33. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. Chen J, Yu M, Guo B, Ma PX, Yin Z. J Colloid Interface Sci; 2018 Mar 15; 514():517-527. PubMed ID: 29289734 [Abstract] [Full Text] [Related]
34. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Luo J, Zhang H, Zhu J, Cui X, Gao J, Wang X, Xiong J. Colloids Surf B Biointerfaces; 2018 Mar 01; 163():369-378. PubMed ID: 29335199 [Abstract] [Full Text] [Related]
38. Embedded silica nanoparticles in poly(caprolactone) nanofibrous scaffolds enhanced osteogenic potential for bone tissue engineering. Ganesh N, Jayakumar R, Koyakutty M, Mony U, Nair SV. Tissue Eng Part A; 2012 Sep 01; 18(17-18):1867-81. PubMed ID: 22725098 [Abstract] [Full Text] [Related]