These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
232 related items for PubMed ID: 31001743
1. L-Erythrulose production with a multideletion strain of Gluconobacter oxydans. Burger C, Kessler C, Gruber S, Ehrenreich A, Liebl W, Weuster-Botz D. Appl Microbiol Biotechnol; 2019 Jun; 103(11):4393-4404. PubMed ID: 31001743 [Abstract] [Full Text] [Related]
2. Characterization and inactivation of the membrane-bound polyol dehydrogenase in Gluconobacter oxydans DSM 7145 reveals a role in meso-erythritol oxidation. Voss J, Ehrenreich A, Liebl W. Microbiology (Reading); 2010 Jun; 156(Pt 6):1890-1899. PubMed ID: 20223802 [Abstract] [Full Text] [Related]
3. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans. Li K, Mao X, Liu L, Lin J, Sun M, Wei D, Yang S. Microb Cell Fact; 2016 Jul 09; 15(1):121. PubMed ID: 27392695 [Abstract] [Full Text] [Related]
4. Biosynthesis of L-Erythrose by Assembly of Two Key Enzymes in Gluconobacter oxydans. Zou X, Lin J, Mao X, Zhao S, Ren Y. J Agric Food Chem; 2017 Sep 06; 65(35):7721-7725. PubMed ID: 28707464 [Abstract] [Full Text] [Related]
5. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003. Zhang H, Shi L, Mao X, Lin J, Wei D. J Biotechnol; 2016 Nov 10; 237():18-24. PubMed ID: 27619641 [Abstract] [Full Text] [Related]
6. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation. Yuan J, Wu M, Lin J, Yang L. BMC Biotechnol; 2016 May 17; 16(1):42. PubMed ID: 27189063 [Abstract] [Full Text] [Related]
7. [Biosynthesis of 3-hydroxypropionic acid from 1,3-propanediol by Gluconobacter oxydans ZJB09112]. Sun L, Yu F, Zheng Y. Sheng Wu Gong Cheng Xue Bao; 2012 Apr 17; 28(4):498-507. PubMed ID: 22803399 [Abstract] [Full Text] [Related]
8. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains. Siemen A, Kosciow K, Schweiger P, Deppenmeier U. Appl Microbiol Biotechnol; 2018 Feb 17; 102(4):1699-1710. PubMed ID: 29279957 [Abstract] [Full Text] [Related]
9. Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield. Kiefler I, Bringer S, Bott M. Appl Microbiol Biotechnol; 2017 Jul 17; 101(13):5453-5467. PubMed ID: 28484812 [Abstract] [Full Text] [Related]
10. Overexpression of a type II 3-dehydroquinate dehydratase enhances the biotransformation of quinate to 3-dehydroshikimate in Gluconobacter oxydans. Nishikura-Imamura S, Matsutani M, Insomphun C, Vangnai AS, Toyama H, Yakushi T, Abe T, Adachi O, Matsushita K. Appl Microbiol Biotechnol; 2014 Apr 17; 98(7):2955-63. PubMed ID: 24352733 [Abstract] [Full Text] [Related]
11. Modification and evolution of Gluconobacter oxydans for enhanced growth and biotransformation capabilities at low glucose concentration. Zhu K, Lu L, Wei L, Wei D, Imanaka T, Hua Q. Mol Biotechnol; 2011 Sep 17; 49(1):56-64. PubMed ID: 21253895 [Abstract] [Full Text] [Related]
12. Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Peters B, Mientus M, Kostner D, Junker A, Liebl W, Ehrenreich A. Appl Microbiol Biotechnol; 2013 Jul 17; 97(14):6397-412. PubMed ID: 23519735 [Abstract] [Full Text] [Related]
13. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy. Yuan J, Wu M, Lin J, Yang L. J Biosci Bioeng; 2016 Jul 17; 122(1):10-6. PubMed ID: 26896860 [Abstract] [Full Text] [Related]
14. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Gätgens C, Degner U, Bringer-Meyer S, Herrmann U. Appl Microbiol Biotechnol; 2007 Sep 17; 76(3):553-9. PubMed ID: 17497148 [Abstract] [Full Text] [Related]
15. Highly selective oxidation of benzyl alcohol using engineered Gluconobacter oxydans in biphasic system. Wu J, Li MH, Lin JP, Wei DZ. Curr Microbiol; 2011 Apr 17; 62(4):1123-7. PubMed ID: 21140150 [Abstract] [Full Text] [Related]
16. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Li MH, Wu J, Liu X, Lin JP, Wei DZ, Chen H. Bioresour Technol; 2010 Nov 17; 101(21):8294-9. PubMed ID: 20576428 [Abstract] [Full Text] [Related]
17. Improved Xylitol Production from D-Arabitol by Enhancing the Coenzyme Regeneration Efficiency of the Pentose Phosphate Pathway in Gluconobacter oxydans. Li S, Zhang J, Xu H, Feng X. J Agric Food Chem; 2016 Feb 10; 64(5):1144-50. PubMed ID: 26727541 [Abstract] [Full Text] [Related]
18. L-erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase. Moonmangmee D, Adachi O, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K. Biosci Biotechnol Biochem; 2002 Feb 10; 66(2):307-18. PubMed ID: 11999403 [Abstract] [Full Text] [Related]
19. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293. Sriherfyna FH, Matsutani M, Hirano K, Koike H, Kataoka N, Yamashita T, Nakamaru-Ogiso E, Matsushita K, Yakushi T. Appl Environ Microbiol; 2021 Jan 04; 87(2):. PubMed ID: 33127815 [Abstract] [Full Text] [Related]
20. Improvement of pyrroloquinoline quinone-dependent d-sorbitol dehydrogenase activity from Gluconobacter oxydans via expression of Vitreoscilla hemoglobin and regulation of dissolved oxygen tension for the biosynthesis of 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose. Liu D, Ke X, Hu ZC, Zheng YG. J Biosci Bioeng; 2021 May 04; 131(5):518-524. PubMed ID: 33487552 [Abstract] [Full Text] [Related] Page: [Next] [New Search]