These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


418 related items for PubMed ID: 31009868

  • 1. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution.
    Ma J, Lei M, Weng L, Li Y, Chen Y, Islam MS, Zhao J, Chen T.
    Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868
    [Abstract] [Full Text] [Related]

  • 2. Immobilization and release risk of arsenic associated with partitioning and reactivity of iron oxide minerals in paddy soils.
    Ouyang X, Ma J, Weng L, Chen Y, Wei R, Zhao J, Ren Z, Peng H, Liao Z, Li Y.
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36377-36390. PubMed ID: 32562227
    [Abstract] [Full Text] [Related]

  • 3. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ, Yoo JC, Baek K.
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [Abstract] [Full Text] [Related]

  • 4. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities.
    Tabelin CB, Silwamba M, Paglinawan FC, Mondejar AJS, Duc HG, Resabal VJ, Opiso EM, Igarashi T, Tomiyama S, Ito M, Hiroyoshi N, Villacorte-Tabelin M.
    Chemosphere; 2020 Dec; 260():127574. PubMed ID: 32688316
    [Abstract] [Full Text] [Related]

  • 5. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea.
    Lee PK, Yu S, Jeong YJ, Seo J, Choi SG, Yoon BY.
    Chemosphere; 2019 Feb; 217():183-194. PubMed ID: 30419376
    [Abstract] [Full Text] [Related]

  • 6. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source.
    Chrastný V, Vaněk A, Teper L, Cabala J, Procházka J, Pechar L, Drahota P, Penížek V, Komárek M, Novák M.
    Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226
    [Abstract] [Full Text] [Related]

  • 7. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK, Sherman L, Armienta A, Concilio A, Salinas CF.
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [Abstract] [Full Text] [Related]

  • 8. Lead isotopes and heavy minerals analyzed as tools to understand the distribution of lead and other potentially toxic elements in soils contaminated by Cu smelting (Legnica, Poland).
    Tyszka R, Pietranik A, Kierczak J, Ettler V, Mihaljevič M, Medyńska-Juraszek A.
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24350-24363. PubMed ID: 27655618
    [Abstract] [Full Text] [Related]

  • 9. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M, Hwang JS, Choi SI.
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [Abstract] [Full Text] [Related]

  • 10. Discrimination of metal contaminant sources in river sediments influenced by mining and smelting activities using stable Pb and Zn isotopes.
    Joe DJ, Choi MS, Lee JH, Kim CK, Choi MS, Shin HS.
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):20521-20533. PubMed ID: 38376780
    [Abstract] [Full Text] [Related]

  • 11. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J.
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [Abstract] [Full Text] [Related]

  • 12. Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink?
    Liu C, Yu HY, Liu C, Li F, Xu X, Wang Q.
    Environ Pollut; 2015 Apr; 199():95-101. PubMed ID: 25638690
    [Abstract] [Full Text] [Related]

  • 13. [Polluted characteristics of Zn, Pb, Cd, Cu and As in soil of different mining activity zones].
    Liao GL, Wu C.
    Huan Jing Ke Xue; 2005 May; 26(3):157-61. PubMed ID: 16124490
    [Abstract] [Full Text] [Related]

  • 14. Characterization of As-polluted soils by laboratory X-ray-based techniques coupled with sequential extractions and electron microscopy: the case of Crocette gold mine in the Monte Rosa mining district (Italy).
    Allegretta I, Porfido C, Martin M, Barberis E, Terzano R, Spagnuolo M.
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25080-25090. PubMed ID: 29936615
    [Abstract] [Full Text] [Related]

  • 15. Spatial distribution and environmental implications of heavy metals in typical lead (Pb)-zinc (Zn) mine tailings impoundments in Guangdong Province, South China.
    Chen T, Lei C, Yan B, Li LL, Xu DM, Ying GG.
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36702-36711. PubMed ID: 30377971
    [Abstract] [Full Text] [Related]

  • 16. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H, Probst A, Liao B.
    Sci Total Environ; 2005 Mar 01; 339(1-3):153-66. PubMed ID: 15740766
    [Abstract] [Full Text] [Related]

  • 17. Geochemical fractions and risk assessment of trace elements in soils around Jiaojia gold mine in Shandong Province, China.
    Cao F, Kong L, Yang L, Zhang W.
    Environ Sci Pollut Res Int; 2015 Sep 01; 22(17):13496-505. PubMed ID: 25940495
    [Abstract] [Full Text] [Related]

  • 18. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal).
    Candeias C, Ávila PF, Ferreira da Silva E, Teixeira JP.
    Environ Monit Assess; 2015 Mar 01; 187(3):135. PubMed ID: 25702148
    [Abstract] [Full Text] [Related]

  • 19. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J, Xie ZM, Zhu YG, Naidu R.
    J Environ Sci (China); 2005 Mar 01; 17(6):881-5. PubMed ID: 16465871
    [Abstract] [Full Text] [Related]

  • 20. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN, Mikutta C, Barmettler K, Kotsev T, Kretzschmar R.
    Environ Sci Technol; 2014 Mar 01; 48(1):208-17. PubMed ID: 24283255
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.