These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1138 related items for PubMed ID: 31011810

  • 1. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA, Raut PW, Sharma N, Giram P, Khandwekar AP, Garnaik B.
    J Mater Sci Mater Med; 2019 Apr 22; 30(5):51. PubMed ID: 31011810
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering.
    Bakhshandeh B, Soleimani M, Ghaemi N, Shabani I.
    Acta Pharmacol Sin; 2011 May 22; 32(5):626-36. PubMed ID: 21516135
    [Abstract] [Full Text] [Related]

  • 4. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S, Prabhakaran MP, Qin X, Ramakrishna S.
    J Biomater Appl; 2015 May 22; 29(10):1394-406. PubMed ID: 25592285
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S.
    Artif Organs; 2008 May 22; 32(5):388-97. PubMed ID: 18471168
    [Abstract] [Full Text] [Related]

  • 7. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR, Davaran S, Aghazadeh M, Rahbarghazi R, Salehi R, Ramazani A.
    J Biomater Appl; 2019 Mar 22; 33(8):1128-1144. PubMed ID: 30651055
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration.
    Sedghi R, Shaabani A, Sayyari N.
    Carbohydr Polym; 2020 Feb 15; 230():115707. PubMed ID: 31887957
    [Abstract] [Full Text] [Related]

  • 11. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK, Tiwari AP, Pant HR, Shrestha BK, Kim HJ, Park CH, Kim CS.
    ACS Appl Mater Interfaces; 2015 Sep 09; 7(35):19672-83. PubMed ID: 26295953
    [Abstract] [Full Text] [Related]

  • 12. Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes.
    Zarekhalili Z, Bahrami SH, Ranjbar-Mohammadi M, Milan PB.
    Int J Biol Macromol; 2017 Jan 09; 94(Pt A):679-690. PubMed ID: 27777080
    [Abstract] [Full Text] [Related]

  • 13. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.
    Int J Nanomedicine; 2013 Jan 09; 8():4197-213. PubMed ID: 24204147
    [Abstract] [Full Text] [Related]

  • 14. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications.
    Abudhahir M, Saleem A, Paramita P, Kumar SD, Tze-Wen C, Selvamurugan N, Moorthi A.
    J Biomed Mater Res B Appl Biomater; 2021 May 09; 109(5):654-664. PubMed ID: 32935919
    [Abstract] [Full Text] [Related]

  • 15. Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration.
    Perumal G, Sivakumar PM, Nandkumar AM, Doble M.
    Mater Sci Eng C Mater Biol Appl; 2020 Apr 09; 109():110527. PubMed ID: 32228978
    [Abstract] [Full Text] [Related]

  • 16. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering.
    Bhowmick A, Banerjee SL, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP.
    Int J Biol Macromol; 2018 Jan 09; 106():11-19. PubMed ID: 28774805
    [Abstract] [Full Text] [Related]

  • 17. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation.
    Suryavanshi A, Khanna K, Sindhu KR, Bellare J, Srivastava R.
    Biomed Mater; 2017 Sep 25; 12(5):055011. PubMed ID: 28944766
    [Abstract] [Full Text] [Related]

  • 18. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, Kim BH.
    Mater Sci Eng C Mater Biol Appl; 2017 May 01; 74():525-535. PubMed ID: 28254327
    [Abstract] [Full Text] [Related]

  • 19. Emulsion electrospun epigallocatechin gallate-loaded silk fibroin/polycaprolactone nanofibrous membranes for enhancing guided bone regeneration.
    Chen H, Xu J, Dun Z, Yang Y, Wang Y, Shu F, Zhang Z, Liu M.
    Biomed Mater; 2024 Aug 22; 19(5):. PubMed ID: 39121887
    [Abstract] [Full Text] [Related]

  • 20. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection.
    Selvakumar M, Pawar HS, Francis NK, Das B, Dhara S, Chattopadhyay S.
    ACS Appl Mater Interfaces; 2016 Mar 09; 8(9):5941-60. PubMed ID: 26889707
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 57.