These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 31019232
1. Carbon Catabolite Repression in Yeast is Not Limited to Glucose. Simpson-Lavy K, Kupiec M. Sci Rep; 2019 Apr 24; 9(1):6491. PubMed ID: 31019232 [Abstract] [Full Text] [Related]
2. Carbon catabolite repression: not only for glucose. Simpson-Lavy K, Kupiec M. Curr Genet; 2019 Dec 24; 65(6):1321-1323. PubMed ID: 31119370 [Abstract] [Full Text] [Related]
3. Artificial recruitment of mediator by the DNA-binding domain of Adr1 overcomes glucose repression of ADH2 expression. Young ET, Tachibana C, Chang HW, Dombek KM, Arms EM, Biddick R. Mol Cell Biol; 2008 Apr 24; 28(8):2509-16. PubMed ID: 18250152 [Abstract] [Full Text] [Related]
5. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Vallari RC, Cook WJ, Audino DC, Morgan MJ, Jensen DE, Laudano AP, Denis CL. Mol Cell Biol; 1992 Apr 24; 12(4):1663-73. PubMed ID: 1549119 [Abstract] [Full Text] [Related]
6. Snf1-dependent and Snf1-independent pathways of constitutive ADH2 expression in Saccharomyces cerevisiae. Voronkova V, Kacherovsky N, Tachibana C, Yu D, Young ET. Genetics; 2006 Apr 24; 172(4):2123-38. PubMed ID: 16415371 [Abstract] [Full Text] [Related]
7. ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Dombek KM, Camier S, Young ET. Mol Cell Biol; 1993 Jul 24; 13(7):4391-9. PubMed ID: 8321238 [Abstract] [Full Text] [Related]
8. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Walther K, Schüller HJ. Microbiology (Reading); 2001 Aug 24; 147(Pt 8):2037-2044. PubMed ID: 11495982 [Abstract] [Full Text] [Related]
9. Snf1-independent, glucose-resistant transcription of Adr1-dependent genes in a mediator mutant of Saccharomyces cerevisiae. Young ET, Yen K, Dombek KM, Law GL, Chang E, Arms E. Mol Microbiol; 2009 Oct 24; 74(2):364-83. PubMed ID: 19732343 [Abstract] [Full Text] [Related]
10. Snf1-Dependent Transcription Confers Glucose-Induced Decay upon the mRNA Product. Braun KA, Dombek KM, Young ET. Mol Cell Biol; 2016 Feb 15; 36(4):628-44. PubMed ID: 26667037 [Abstract] [Full Text] [Related]
11. Two homologs of the Cat8 transcription factor are involved in the regulation of ethanol utilization in Komagataella phaffii. Barbay D, Mačáková M, Sützl L, De S, Mattanovich D, Gasser B. Curr Genet; 2021 Aug 15; 67(4):641-661. PubMed ID: 33725138 [Abstract] [Full Text] [Related]
12. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae]. Cai Y, Qi X, Qi Q, Lin Y, Wang Z, Wang Q. Sheng Wu Gong Cheng Xue Bao; 2018 Jan 25; 34(1):54-67. PubMed ID: 29380571 [Abstract] [Full Text] [Related]
13. Magnesium ions in yeast: setting free the metabolism from glucose catabolite repression. Barros de Souza R, Silva RK, Ferreira DS, de Sá Leitão Paiva Junior S, de Barros Pita W, de Morais Junior MA. Metallomics; 2016 Nov 09; 8(11):1193-1203. PubMed ID: 27714092 [Abstract] [Full Text] [Related]
15. The CCR1 (SNF1) and SCH9 protein kinases act independently of cAMP-dependent protein kinase and the transcriptional activator ADR1 in controlling yeast ADH2 expression. Denis CL, Audino DC. Mol Gen Genet; 1991 Oct 09; 229(3):395-9. PubMed ID: 1944227 [Abstract] [Full Text] [Related]
16. Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. Sloan JS, Dombek KM, Young ET. J Biol Chem; 1999 Dec 31; 274(53):37575-82. PubMed ID: 10608811 [Abstract] [Full Text] [Related]
17. Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis. Mazzoni C, Saliola M, Falcone C. Mol Microbiol; 1992 Aug 31; 6(16):2279-86. PubMed ID: 1406268 [Abstract] [Full Text] [Related]
18. Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production. Kim SJ, Lee JE, Lee DY, Park H, Kim KH, Park YC. Appl Microbiol Biotechnol; 2018 Oct 31; 102(20):8989-9002. PubMed ID: 30121750 [Abstract] [Full Text] [Related]
19. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae. Cao H, Yue M, Li S, Bai X, Zhao X, Du Y. Appl Microbiol Biotechnol; 2011 Feb 31; 89(3):733-8. PubMed ID: 20938771 [Abstract] [Full Text] [Related]
20. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae. Lodi T, Goffrini P, Ferrero I, Donnini C. Microbiology (Reading); 1995 Sep 31; 141 ( Pt 9)():2201-9. PubMed ID: 7496532 [Abstract] [Full Text] [Related] Page: [Next] [New Search]