These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 31019232
21. Different levels of catabolite repression optimize growth in stable and variable environments. New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen KJ. PLoS Biol; 2014 Jan; 12(1):e1001764. PubMed ID: 24453942 [Abstract] [Full Text] [Related]
22. New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription. Luzzani C, Cardillo SB, Bermúdez Moretti M, Correa García S. Microbiology (Reading); 2007 Nov; 153(Pt 11):3677-3684. PubMed ID: 17975075 [Abstract] [Full Text] [Related]
26. Saccharomyces cerevisiae JEN1 promoter activity is inversely related to concentration of repressing sugar. Chambers P, Issaka A, Palecek SP. Appl Environ Microbiol; 2004 Jan; 70(1):8-17. PubMed ID: 14711620 [Abstract] [Full Text] [Related]
27. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae. Xue T, Liu K, Chen D, Yuan X, Fang J, Yan H, Huang L, Chen Y, He W. World J Microbiol Biotechnol; 2018 Oct 01; 34(10):154. PubMed ID: 30276556 [Abstract] [Full Text] [Related]
30. Nsf1/Ypl230w participates in transcriptional activation during non-fermentative growth and in response to salt stress in Saccharomyces cerevisiae. Hlynialuk C, Schierholtz R, Vernooy A, van der Merwe G. Microbiology (Reading); 2008 Aug 01; 154(Pt 8):2482-2491. PubMed ID: 18667581 [Abstract] [Full Text] [Related]
31. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae. Belinchón MM, Gancedo JM. Arch Microbiol; 2003 Oct 01; 180(4):293-7. PubMed ID: 12955310 [Abstract] [Full Text] [Related]
32. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae. Gancedo JM, Flores CL, Gancedo C. Biochim Biophys Acta; 2015 Jul 01; 1850(7):1362-7. PubMed ID: 25810078 [Abstract] [Full Text] [Related]
33. Regulation of expression and activity of the yeast transcription factor ADR1. Blumberg H, Hartshorne TA, Young ET. Mol Cell Biol; 1988 May 01; 8(5):1868-76. PubMed ID: 3290644 [Abstract] [Full Text] [Related]
37. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Schüller HJ. Curr Genet; 2003 Jun 01; 43(3):139-60. PubMed ID: 12715202 [Abstract] [Full Text] [Related]
38. The effects of ADR1 and CCR1 gene dosage on the regulation of the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. Denis CL. Mol Gen Genet; 1987 Jun 01; 208(1-2):101-6. PubMed ID: 3302603 [Abstract] [Full Text] [Related]
39. Transcriptional Profiling of Saccharomyces cerevisiae Reveals the Impact of Variation of a Single Transcription Factor on Differential Gene Expression in 4NQO, Fermentable, and Nonfermentable Carbon Sources. Rong-Mullins X, Ayers MC, Summers M, Gallagher JEG. G3 (Bethesda); 2018 Feb 02; 8(2):607-619. PubMed ID: 29208650 [Abstract] [Full Text] [Related]
40. Identification and characterization of three genes that affect expression of ADH2 in Saccharomyces cerevisiae. Karnitz L, Morrison M, Young ET. Genetics; 1992 Oct 02; 132(2):351-9. PubMed ID: 1427033 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]