These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 31027799

  • 1. An organoleptic survey of meads made with lactic acid-producing yeasts.
    Peepall C, Nickens DG, Vinciguerra J, Bochman ML.
    Food Microbiol; 2019 Sep; 82():398-408. PubMed ID: 31027799
    [Abstract] [Full Text] [Related]

  • 2. Characterizing the chemical and sensory profiles of traditional American meads.
    Senn K, Cantu A, Heymann H.
    J Food Sci; 2021 Mar; 86(3):1048-1057. PubMed ID: 33527386
    [Abstract] [Full Text] [Related]

  • 3. Optimization of honey-must preparation and alcoholic fermentation by Saccharomyces cerevisiae for mead production.
    Mendes-Ferreira A, Cosme F, Barbosa C, Falco V, Inês A, Mendes-Faia A.
    Int J Food Microbiol; 2010 Nov 15; 144(1):193-8. PubMed ID: 20937538
    [Abstract] [Full Text] [Related]

  • 4. Effect of different starter cultures on chemical and microbial parameters of buckwheat honey fermentation.
    Bednarek M, Szwengiel A, Flórez AB, Czarnecki Z, Mayo B.
    Food Microbiol; 2019 Sep 15; 82():294-302. PubMed ID: 31027786
    [Abstract] [Full Text] [Related]

  • 5. High-cell-density fermentation of Saccharomyces cerevisiae for the optimisation of mead production.
    Pereira AP, Mendes-Ferreira A, Oliveira JM, Estevinho LM, Mendes-Faia A.
    Food Microbiol; 2013 Feb 15; 33(1):114-23. PubMed ID: 23122509
    [Abstract] [Full Text] [Related]

  • 6. Volatile Profile of Mead Fermenting Blossom Honey and Honeydew Honey with or without Ribes nigrum.
    Chitarrini G, Debiasi L, Stuffer M, Ueberegger E, Zehetner E, Jaeger H, Robatscher P, Conterno L.
    Molecules; 2020 Apr 15; 25(8):. PubMed ID: 32326547
    [Abstract] [Full Text] [Related]

  • 7. Using wild yeasts to modulate the aroma profile of low-alcoholic meads.
    Van Mullem JJ, Zhang J, Dias DR, Schwan RF.
    Braz J Microbiol; 2022 Dec 15; 53(4):2173-2184. PubMed ID: 36269554
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Characterization of a new type of mead fermented with Cannabis sativa L. (hemp).
    Romano R, Aiello A, De Luca L, Sica R, Caprio E, Pizzolongo F, Blaiotta G.
    J Food Sci; 2021 Mar 15; 86(3):874-880. PubMed ID: 33559225
    [Abstract] [Full Text] [Related]

  • 10. Developments in the fermentation process and quality improvement strategies for mead production.
    Iglesias A, Pascoal A, Choupina AB, Carvalho CA, Feás X, Estevinho LM.
    Molecules; 2014 Aug 19; 19(8):12577-90. PubMed ID: 25153872
    [Abstract] [Full Text] [Related]

  • 11. Primary souring: A novel bacteria-free method for sour beer production.
    Osburn K, Amaral J, Metcalf SR, Nickens DM, Rogers CM, Sausen C, Caputo R, Miller J, Li H, Tennessen JM, Bochman ML.
    Food Microbiol; 2018 Apr 19; 70():76-84. PubMed ID: 29173643
    [Abstract] [Full Text] [Related]

  • 12. Mead production: tradition versus modernity.
    Ramalhosa E, Gomes T, Pereira AP, Dias T, Estevinho LM.
    Adv Food Nutr Res; 2011 Apr 19; 63():101-18. PubMed ID: 21867893
    [Abstract] [Full Text] [Related]

  • 13. Production of the Sicilian distillate "Spiritu re fascitrari" from honey by-products: An interesting source of yeast diversity.
    Gaglio R, Alfonzo A, Francesca N, Corona O, Di Gerlando R, Columba P, Moschetti G.
    Int J Food Microbiol; 2017 Nov 16; 261():62-72. PubMed ID: 28992516
    [Abstract] [Full Text] [Related]

  • 14. Growing conditions of Saccharomyces boulardii for the development of potentially probiotic mead: Fermentation kinetics, viable cell counts and bioactive compounds.
    de Souza HF, Bessa MS, Gonçalves VDDP, Dos Santos JV, Pinheiro C, das Chagas EGL, de Carvalho MV, Brandi IV, Kamimura ES.
    Food Sci Technol Int; 2024 Oct 16; 30(7):603-613. PubMed ID: 36883202
    [Abstract] [Full Text] [Related]

  • 15. Mead production: selection and characterization assays of Saccharomyces cerevisiae strains.
    Pereira AP, Dias T, Andrade J, Ramalhosa E, Estevinho LM.
    Food Chem Toxicol; 2009 Aug 16; 47(8):2057-63. PubMed ID: 19481129
    [Abstract] [Full Text] [Related]

  • 16. Microbial Diversity of Commercial Makgeolli and Its Influence on the Organoleptic Characteristics of Korean Rice Sourdough, Jeung-Pyun.
    Park J, Seo JS, Kim SA, Shin SY, Park JH, Han NS.
    J Microbiol Biotechnol; 2017 Oct 28; 27(10):1736-1743. PubMed ID: 28813780
    [Abstract] [Full Text] [Related]

  • 17. Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR+] non-genetic element.
    Watanabe D, Kumano M, Sugimoto Y, Ito M, Ohashi M, Sunada K, Takahashi T, Yamada T, Takagi H.
    J Biosci Bioeng; 2018 Nov 28; 126(5):624-629. PubMed ID: 29861316
    [Abstract] [Full Text] [Related]

  • 18. Influence of indigenous yeasts on the fermentation and volatile profile of plum brandies.
    Satora P, Tuszyński T.
    Food Microbiol; 2010 May 28; 27(3):418-24. PubMed ID: 20227608
    [Abstract] [Full Text] [Related]

  • 19. Isolation of lactic acid-tolerant Saccharomyces cerevisiae from Cameroonian alcoholic beverage.
    Kubo R, Ohta K, Funakawa S, Kitabatake N, Araki S, Izawa S.
    J Biosci Bioeng; 2014 Dec 28; 118(6):657-60. PubMed ID: 24910259
    [Abstract] [Full Text] [Related]

  • 20. Optimization of mead production using response surface methodology.
    Gomes T, Barradas C, Dias T, Verdial J, Morais JS, Ramalhosa E, Estevinho LM.
    Food Chem Toxicol; 2013 Sep 28; 59():680-6. PubMed ID: 23856495
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.