These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 31035760

  • 1. Design Principles for Thermoresponsive Core-Shell Nanoparticles: Controlling Thermal Transitions by Brush Morphology.
    Reimhult E, Schroffenegger M, Lassenberger A.
    Langmuir; 2019 Jun 04; 35(22):7092-7104. PubMed ID: 31035760
    [Abstract] [Full Text] [Related]

  • 2. Controlled aggregation and cell uptake of thermoresponsive polyoxazoline-grafted superparamagnetic iron oxide nanoparticles.
    Kurzhals S, Gal N, Zirbs R, Reimhult E.
    Nanoscale; 2017 Feb 23; 9(8):2793-2805. PubMed ID: 28155937
    [Abstract] [Full Text] [Related]

  • 3. Thermoresponsive Core-Shell Nanoparticles: Does Core Size Matter?
    Schroffenegger M, Reimhult E.
    Materials (Basel); 2018 Sep 07; 11(9):. PubMed ID: 30205481
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Synthesis and Magneto-Thermal Actuation of Iron Oxide Core-PNIPAM Shell Nanoparticles.
    Kurzhals S, Zirbs R, Reimhult E.
    ACS Appl Mater Interfaces; 2015 Sep 02; 7(34):19342-52. PubMed ID: 26270412
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Aggregation of thermoresponsive core-shell nanoparticles: Influence of particle concentration, dispersant molecular weight and grafting.
    Kurzhals S, Gal N, Zirbs R, Reimhult E.
    J Colloid Interface Sci; 2017 Aug 15; 500():321-332. PubMed ID: 28412639
    [Abstract] [Full Text] [Related]

  • 9. Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin.
    Leitner NS, Schroffenegger M, Reimhult E.
    ACS Appl Bio Mater; 2021 Jan 18; 4(1):795-806. PubMed ID: 33490885
    [Abstract] [Full Text] [Related]

  • 10. The Role of Chain Molecular Weight and Hofmeister Series Ions in Thermal Aggregation of Poly(2-Isopropyl-2-Oxazoline) Grafted Nanoparticles.
    Schroffenegger M, Zirbs R, Kurzhals S, Reimhult E.
    Polymers (Basel); 2018 Apr 17; 10(4):. PubMed ID: 30966486
    [Abstract] [Full Text] [Related]

  • 11. Poly(ethylene glycol) Grafting of Nanoparticles Prevents Uptake by Cells and Transport Through Cell Barrier Layers Regardless of Shear Flow and Particle Size.
    Gal N, Charwat V, Städler B, Reimhult E.
    ACS Biomater Sci Eng; 2019 Sep 09; 5(9):4355-4365. PubMed ID: 33438401
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.
    Gillich T, Acikgöz C, Isa L, Schlüter AD, Spencer ND, Textor M.
    ACS Nano; 2013 Jan 22; 7(1):316-29. PubMed ID: 23214719
    [Abstract] [Full Text] [Related]

  • 14. Formation of gold@polymer core-shell particles and gold particle clusters on a template of thermoresponsive and pH-responsive coordination triblock copolymer.
    Zheng P, Jiang X, Zhang X, Zhang W, Shi L.
    Langmuir; 2006 Oct 24; 22(22):9393-6. PubMed ID: 17042559
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Probing the causes of thermal hysteresis using tunable Nagg micelles with linear and brush-like thermoresponsive coronas.
    Blackman LD, Gibson MI, O'Reilly RK.
    Polym Chem; 2017 Jan 01; 8(1):233-244. PubMed ID: 28496523
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.