These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
169 related items for PubMed ID: 31036229
41. Ultrasensitive sliver nanorods array SERS sensor for mercury ions. Song C, Yang B, Zhu Y, Yang Y, Wang L. Biosens Bioelectron; 2017 Jan 15; 87():59-65. PubMed ID: 27522013 [Abstract] [Full Text] [Related]
43. Reduced graphene oxide nanosheets modified with nickel disulfide and curcumin nanoparticles for non-enzymatic electrochemical sensing of methyl parathion and 4-nitrophenol. Mejri A, Mars A, Elfil H, Hamzaoui AH. Mikrochim Acta; 2019 Oct 19; 186(11):704. PubMed ID: 31628548 [Abstract] [Full Text] [Related]
44. Effects of storage conditions and fruit processing on the degradation of parathion methyl on apples and lemons. Pappas C, Kyriakidis NV, Athanasopoulos PE. Food Addit Contam; 2003 Apr 19; 20(4):375-9. PubMed ID: 12775480 [Abstract] [Full Text] [Related]
45. Surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal ablation of target cancer cells using polydopamine-encapsulated gold nanorods as multifunctional agents. Sun C, Gao M, Zhang X. Anal Bioanal Chem; 2017 Aug 19; 409(20):4915-4926. PubMed ID: 28585085 [Abstract] [Full Text] [Related]
50. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Chang J, Zhang A, Huang Z, Chen Y, Zhang Q, Cui D. Talanta; 2019 Jun 01; 198():45-54. PubMed ID: 30876586 [Abstract] [Full Text] [Related]
52. Fabrication of a Flexible Gold Nanorod Polymer Metafilm via a Phase Transfer Method as a SERS Substrate for Detecting Food Contaminants. Yang N, You TT, Gao YK, Zhang CM, Yin PG. J Agric Food Chem; 2018 Jul 05; 66(26):6889-6896. PubMed ID: 29882674 [Abstract] [Full Text] [Related]
53. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery. Jiang P, Hu Y, Li G. Talanta; 2019 Aug 01; 200():212-217. PubMed ID: 31036175 [Abstract] [Full Text] [Related]
55. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Zhang L, Jiang C, Zhang Z. Nanoscale; 2013 May 07; 5(9):3773-9. PubMed ID: 23535912 [Abstract] [Full Text] [Related]
56. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Zhao Y, Zhang W, Lin Y, Du D. Nanoscale; 2013 Feb 07; 5(3):1121-6. PubMed ID: 23280070 [Abstract] [Full Text] [Related]
57. Localized Surface Plasmon Resonance-Based Colorimetric Assay Featuring Thiol-Capped Au Nanoparticles Combined with a Mobile Application for On-Site Parathion Organophosphate Pesticide Detection. Chien YH, Su CH, Hu CC, Yeh KH, Lin WC. Langmuir; 2022 Jan 18; 38(2):838-848. PubMed ID: 34989582 [Abstract] [Full Text] [Related]
58. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods. Strickland AD, Batt CA. Anal Chem; 2009 Apr 15; 81(8):2895-903. PubMed ID: 19301846 [Abstract] [Full Text] [Related]
59. Gold Nanorods as Surface-Enhanced Raman Spectroscopy Substrates for Rapid and Sensitive Analysis of Allura Red and Sunset Yellow in Beverages. Ou Y, Wang X, Lai K, Huang Y, Rasco BA, Fan Y. J Agric Food Chem; 2018 Mar 21; 66(11):2954-2961. PubMed ID: 29489346 [Abstract] [Full Text] [Related]
60. Hypersensitive and selective biosensing based on microfiber interferometry and molecular imprinted nanoparticles. Shrivastav AM, Sharma G, Jha R. Biosens Bioelectron; 2019 Sep 15; 141():111347. PubMed ID: 31226605 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]