These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


380 related items for PubMed ID: 31043114

  • 1. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics.
    Lin PC, Chan KF, Kiess IA, Tan J, Shahreel W, Wong SY, Song Z.
    MAbs; 2019 Jul; 11(5):965-976. PubMed ID: 31043114
    [Abstract] [Full Text] [Related]

  • 2. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.
    Fan L, Kadura I, Krebs LE, Hatfield CC, Shaw MM, Frye CC.
    Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567
    [Abstract] [Full Text] [Related]

  • 3. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter.
    Fan L, Kadura I, Krebs LE, Larson JL, Bowden DM, Frye CC.
    J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Methionine sulfoximine supplementation enhances productivity in GS-CHOK1SV cell lines through glutathione biosynthesis.
    Feary M, Racher AJ, Young RJ, Smales CM.
    Biotechnol Prog; 2017 Jan; 33(1):17-25. PubMed ID: 27689785
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification.
    Jun SC, Kim MS, Hong HJ, Lee GM.
    Biotechnol Prog; 2006 Jan; 22(3):770-80. PubMed ID: 16739961
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. An attempt to add biological functions by genetic engineering in order to produce high-performance bioreactor cells for hybrid artificial liver: transfection of glutamine synthetase into Chinese hamster ovary (CHO) cell.
    Enosawa S, Suzuki S, Fujino M, Amemiya H, Omasa T, Urayama S, Tanimura N, Suga K.
    Cell Transplant; 1997 Jan; 6(5):537-40. PubMed ID: 9331509
    [Abstract] [Full Text] [Related]

  • 11. Enhancing CHO cell productivity through a dual selection system using Aspg and Gs in glutamine free medium.
    Ha TK, Òdena A, Karottki KJC, Kim CL, Hefzi H, Lee GM, Faustrup Kildegaard H, Nielsen LK, Grav LM, Lewis NE.
    Biotechnol Bioeng; 2023 Apr; 120(4):1159-1166. PubMed ID: 36562657
    [Abstract] [Full Text] [Related]

  • 12. Development of transfection and high-producer screening protocols for the CHOK1SV cell system.
    de la Cruz Edmonds MC, Tellers M, Chan C, Salmon P, Robinson DK, Markusen J.
    Mol Biotechnol; 2006 Oct; 34(2):179-90. PubMed ID: 17172663
    [Abstract] [Full Text] [Related]

  • 13. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells.
    Noh SM, Park JH, Lim MS, Kim JW, Lee GM.
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1035-1045. PubMed ID: 27704181
    [Abstract] [Full Text] [Related]

  • 14. Glutamine synthetase (GS) knockout (KO) using CRISPR/Cpf1 diversely enhances selection efficiency of CHO cells expressing therapeutic antibodies.
    Srila W, Baumann M, Riedl M, Rangnoi K, Borth N, Yamabhai M.
    Sci Rep; 2023 Jun 28; 13(1):10473. PubMed ID: 37380701
    [Abstract] [Full Text] [Related]

  • 15. Short- and long-term effects on mAb-producing CHO cell lines after cryopreservation.
    Subramanian J, Aulakh RPS, Grewal PS, Sanford M, Pynn AFJ, Yuk IH.
    Biotechnol Prog; 2018 Mar 28; 34(2):463-477. PubMed ID: 29314708
    [Abstract] [Full Text] [Related]

  • 16. Improvement of the efficiency and quality in developing a new CHO host cell line.
    Huhn SC, Ou Y, Tang X, Jiang B, Liu R, Lin H, Du Z.
    Biotechnol Prog; 2021 Sep 28; 37(5):e3185. PubMed ID: 34142466
    [Abstract] [Full Text] [Related]

  • 17. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.
    Nakamura T, Omasa T.
    J Biosci Bioeng; 2015 Sep 28; 120(3):323-9. PubMed ID: 25792187
    [Abstract] [Full Text] [Related]

  • 18. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment.
    Rajendra Y, Hougland MD, Alam R, Morehead TA, Barnard GC.
    Biotechnol Bioeng; 2015 May 28; 112(5):977-86. PubMed ID: 25502369
    [Abstract] [Full Text] [Related]

  • 19. Early prediction of instability of Chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins.
    Dorai H, Corisdeo S, Ellis D, Kinney C, Chomo M, Hawley-Nelson P, Moore G, Betenbaugh MJ, Ganguly S.
    Biotechnol Bioeng; 2012 Apr 28; 109(4):1016-30. PubMed ID: 22068683
    [Abstract] [Full Text] [Related]

  • 20. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies.
    Yu DY, Lee SY, Lee GM.
    Biotechnol Bioeng; 2018 May 28; 115(5):1367-1372. PubMed ID: 29359789
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.