These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


336 related items for PubMed ID: 31046238

  • 1. Crystalline Niobium Carbide Superconducting Nanowires Prepared by Focused Ion Beam Direct Writing.
    Porrati F, Barth S, Sachser R, Dobrovolskiy OV, Seybert A, Frangakis AS, Huth M.
    ACS Nano; 2019 Jun 25; 13(6):6287-6296. PubMed ID: 31046238
    [Abstract] [Full Text] [Related]

  • 2. Temperature-Dependent Growth Characteristics of Nb- and CoFe-Based Nanostructures by Direct-Write Using Focused Electron Beam-Induced Deposition.
    Huth M, Porrati F, Gruszka P, Barth S.
    Micromachines (Basel); 2019 Dec 25; 11(1):. PubMed ID: 31881650
    [Abstract] [Full Text] [Related]

  • 3. 3D superconducting hollow nanowires with tailored diameters grown by focused He+ beam direct writing.
    Córdoba R, Ibarra A, Mailly D, Guillamón I, Suderow H, De Teresa JM.
    Beilstein J Nanotechnol; 2020 Dec 25; 11():1198-1206. PubMed ID: 32832315
    [Abstract] [Full Text] [Related]

  • 4. Superconducting properties of in-plane W-C nanowires grown by He+ focused ion beam induced deposition.
    Orús P, Córdoba R, Hlawacek G, De Teresa JM.
    Nanotechnology; 2021 Feb 19; 32(8):085301. PubMed ID: 33171446
    [Abstract] [Full Text] [Related]

  • 5. Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures.
    Porrati F, Barth S, Gazzadi GC, Frabboni S, Volkov OM, Makarov D, Huth M.
    ACS Nano; 2023 Mar 14; 17(5):4704-4715. PubMed ID: 36826847
    [Abstract] [Full Text] [Related]

  • 6. Vertical Growth of Superconducting Crystalline Hollow Nanowires by He+ Focused Ion Beam Induced Deposition.
    Córdoba R, Ibarra A, Mailly D, De Teresa JM.
    Nano Lett; 2018 Feb 14; 18(2):1379-1386. PubMed ID: 29357248
    [Abstract] [Full Text] [Related]

  • 7. Low-resistivity, high-resolution W-C electrical contacts fabricated by direct-write focused electron beam induced deposition.
    Orús P, Sigloch F, Sangiao S, De Teresa JM.
    Open Res Eur; 2022 Feb 14; 2():102. PubMed ID: 37645310
    [Abstract] [Full Text] [Related]

  • 8. Comparison between Focused Electron/Ion Beam-Induced Deposition at Room Temperature and under Cryogenic Conditions.
    De Teresa JM, Orús P, Córdoba R, Philipp P.
    Micromachines (Basel); 2019 Nov 21; 10(12):. PubMed ID: 31766480
    [Abstract] [Full Text] [Related]

  • 9. Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires.
    Orús P, Fomin VM, De Teresa JM, Córdoba R.
    Sci Rep; 2021 Sep 06; 11(1):17698. PubMed ID: 34489493
    [Abstract] [Full Text] [Related]

  • 10. Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursor: Comparing Direct-Write Processing and Thermal Conversion.
    Jungwirth F, Salvador-Porroche A, Porrati F, Jochmann NP, Knez D, Huth M, Gracia I, Cané C, Cea P, De Teresa JM, Barth S.
    J Phys Chem C Nanomater Interfaces; 2024 Feb 22; 128(7):2967-2977. PubMed ID: 38444783
    [Abstract] [Full Text] [Related]

  • 11. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition.
    Córdoba R, Lorenzoni M, Pablo-Navarro J, Magén C, Pérez-Murano F, De Teresa JM.
    Nanotechnology; 2017 Nov 03; 28(44):445301. PubMed ID: 28825408
    [Abstract] [Full Text] [Related]

  • 12. Layer-by-Layer Growth of Complex-Shaped Three-Dimensional Nanostructures with Focused Electron Beams.
    Skoric L, Sanz-Hernández D, Meng F, Donnelly C, Merino-Aceituno S, Fernández-Pacheco A.
    Nano Lett; 2020 Jan 08; 20(1):184-191. PubMed ID: 31869235
    [Abstract] [Full Text] [Related]

  • 13. Microstructural analysis and transport properties of MoO and MoC nanostructures prepared by focused electron beam-induced deposition.
    Makise K, Mitsuishi K, Shimojo M, Shinozaki B.
    Sci Rep; 2014 Jul 18; 4():5740. PubMed ID: 25033894
    [Abstract] [Full Text] [Related]

  • 14. Ultra-fast direct growth of metallic micro- and nano-structures by focused ion beam irradiation.
    Córdoba R, Orús P, Strohauer S, Torres TE, De Teresa JM.
    Sci Rep; 2019 Oct 01; 9(1):14076. PubMed ID: 31575886
    [Abstract] [Full Text] [Related]

  • 15. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.
    Constantino NGN, Anwar MS, Kennedy OW, Dang M, Warburton PA, Fenton JC.
    Nanomaterials (Basel); 2018 Jun 16; 8(6):. PubMed ID: 29914174
    [Abstract] [Full Text] [Related]

  • 16. Charged Particle-Induced Surface Reactions of Organometallic Complexes as a Guide to Precursor Design for Electron- and Ion-Induced Deposition of Nanostructures.
    Yu JC, Abdel-Rahman MK, Fairbrother DH, McElwee-White L.
    ACS Appl Mater Interfaces; 2021 Oct 20; 13(41):48333-48348. PubMed ID: 34633789
    [Abstract] [Full Text] [Related]

  • 17. Thickness-modulated tungsten-carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields.
    Serrano IG, Sesé J, Guillamón I, Suderow H, Vieira S, Ibarra MR, De Teresa JM.
    Beilstein J Nanotechnol; 2016 Oct 20; 7():1698-1708. PubMed ID: 28144519
    [Abstract] [Full Text] [Related]

  • 18. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition.
    Fowlkes JD, Winkler R, Lewis BB, Stanford MG, Plank H, Rack PD.
    ACS Nano; 2016 Jun 28; 10(6):6163-72. PubMed ID: 27284689
    [Abstract] [Full Text] [Related]

  • 19. Three-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing.
    Córdoba R, Mailly D, Rezaev RO, Smirnova EI, Schmidt OG, Fomin VM, Zeitler U, Guillamón I, Suderow H, De Teresa JM.
    Nano Lett; 2019 Dec 11; 19(12):8597-8604. PubMed ID: 31730351
    [Abstract] [Full Text] [Related]

  • 20. Mechanical Properties of 3D Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review.
    Utke I, Michler J, Winkler R, Plank H.
    Micromachines (Basel); 2020 Apr 10; 11(4):. PubMed ID: 32290292
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.