These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


576 related items for PubMed ID: 31048568

  • 1. Influence of low-dimension carbon-based electrodes on the performance of SnO2 nanofiber gas sensors at room temperature.
    Qi W, Li W, Sun Y, Guo J, Xie D, Cai L, Zhu H, Xiang L, Ren T.
    Nanotechnology; 2019 Aug 23; 30(34):345503. PubMed ID: 31048568
    [Abstract] [Full Text] [Related]

  • 2. Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing.
    Wang Z, Zhang T, Zhao C, Han T, Fei T, Liu S, Lu G.
    J Colloid Interface Sci; 2018 Mar 15; 514():599-608. PubMed ID: 29306190
    [Abstract] [Full Text] [Related]

  • 3. Boosting room-temperature ppb-level NO2 sensing over reduced graphene oxide by co-decoration of α-Fe2O3 and SnO2 nanocrystals.
    Zhang Y, Yang Z, Zhao L, Fei T, Liu S, Zhang T.
    J Colloid Interface Sci; 2022 Apr 15; 612():689-700. PubMed ID: 35030345
    [Abstract] [Full Text] [Related]

  • 4. Construction of ZnO/SnO2 Heterostructure on Reduced Graphene Oxide for Enhanced Nitrogen Dioxide Sensitive Performances at Room Temperature.
    Wang Z, Gao S, Fei T, Liu S, Zhang T.
    ACS Sens; 2019 Aug 23; 4(8):2048-2057. PubMed ID: 31262171
    [Abstract] [Full Text] [Related]

  • 5. Facile Fabrication of Au Nanoparticles/Tin Oxide/Reduced Graphene Oxide Ternary Nanocomposite and Its High-Performance SF6 Decomposition Components Sensing.
    Pi S, Zhang X, Cui H, Chen D, Zhang G, Xiao S, Tang J.
    Front Chem; 2019 Aug 23; 7():476. PubMed ID: 31380340
    [Abstract] [Full Text] [Related]

  • 6. Investigation of Microstructure Effect on NO2 Sensors Based on SnO2 Nanoparticles/Reduced Graphene Oxide Hybrids.
    Wang Z, Han T, Fei T, Liu S, Zhang T.
    ACS Appl Mater Interfaces; 2018 Dec 05; 10(48):41773-41783. PubMed ID: 30419750
    [Abstract] [Full Text] [Related]

  • 7. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets.
    Lee JH, Katoch A, Choi SW, Kim JH, Kim HW, Kim SS.
    ACS Appl Mater Interfaces; 2015 Feb 11; 7(5):3101-9. PubMed ID: 25602688
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Three-Dimensional MoS2/Reduced Graphene Oxide Nanosheets/Graphene Quantum Dots Hybrids for High-Performance Room-Temperature NO2 Gas Sensors.
    Yang C, Wang Y, Wu Z, Zhang Z, Hu N, Peng C.
    Nanomaterials (Basel); 2022 Mar 09; 12(6):. PubMed ID: 35335714
    [Abstract] [Full Text] [Related]

  • 10. Light enhanced room temperature resistive NO2 sensor based on a gold-loaded organic-inorganic hybrid perovskite incorporating tin dioxide.
    Chen Y, Zhang X, Liu Z, Zeng Z, Zhao H, Wang X, Xu J.
    Mikrochim Acta; 2019 Jan 04; 186(1):47. PubMed ID: 30610459
    [Abstract] [Full Text] [Related]

  • 11. High Performance Acetylene Sensor with Heterostructure Based on WO₃ Nanolamellae/Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature.
    Jiang Z, Chen W, Jin L, Cui F, Song Z, Zhu C.
    Nanomaterials (Basel); 2018 Nov 05; 8(11):. PubMed ID: 30400651
    [Abstract] [Full Text] [Related]

  • 12. Highly Sensitive, Selective, Flexible and Scalable Room-Temperature NO2 Gas Sensor Based on Hollow SnO2/ZnO Nanofibers.
    Guo J, Li W, Zhao X, Hu H, Wang M, Luo Y, Xie D, Zhang Y, Zhu H.
    Molecules; 2021 Oct 27; 26(21):. PubMed ID: 34770884
    [Abstract] [Full Text] [Related]

  • 13. Three-Dimensional Graphene Hydrogel Decorated with SnO2 for High-Performance NO2 Sensing with Enhanced Immunity to Humidity.
    Wu J, Wu Z, Ding H, Wei Y, Huang W, Yang X, Li Z, Qiu L, Wang X.
    ACS Appl Mater Interfaces; 2020 Jan 15; 12(2):2634-2643. PubMed ID: 31894956
    [Abstract] [Full Text] [Related]

  • 14. Humidity-Insensitive NO2 Sensors Based on SnO2/rGO Composites.
    Wang Y, Liu L, Sun F, Li T, Zhang T, Qin S.
    Front Chem; 2021 Jan 15; 9():681313. PubMed ID: 34124007
    [Abstract] [Full Text] [Related]

  • 15. Engineering SnO2 nanorods/ethylenediamine-modified graphene heterojunctions with selective adsorption and electronic structure modulation for ultrasensitive room-temperature NO2 detection.
    Zheng S, Sun J, Hao J, Sun Q, Wan P, Li Y, Zhou X, Yuan Y, Zhang X, Wang Y.
    Nanotechnology; 2021 Apr 09; 32(15):155505. PubMed ID: 33361555
    [Abstract] [Full Text] [Related]

  • 16. Enhancing performances of a resistivity-type hydrogen sensor based on Pd/SnO2/RGO nanocomposites.
    Peng Y, Zheng L, Zou K, Li C.
    Nanotechnology; 2017 May 26; 28(21):215501. PubMed ID: 28362639
    [Abstract] [Full Text] [Related]

  • 17. The enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite.
    Wang Z, Jia Z, Li Q, Zhang X, Sun W, Sun J, Liu B, Ha B.
    J Colloid Interface Sci; 2019 Mar 01; 537():228-237. PubMed ID: 30445351
    [Abstract] [Full Text] [Related]

  • 18. High-Response Room-Temperature NO2 Sensor and Ultrafast Humidity Sensor Based on SnO2 with Rich Oxygen Vacancy.
    Zhong Y, Li W, Zhao X, Jiang X, Lin S, Zhen Z, Chen W, Xie D, Zhu H.
    ACS Appl Mater Interfaces; 2019 Apr 10; 11(14):13441-13449. PubMed ID: 30895771
    [Abstract] [Full Text] [Related]

  • 19. Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor.
    Bai X, Lv H, Liu Z, Chen J, Wang J, Sun B, Zhang Y, Wang R, Shi K.
    J Hazard Mater; 2021 Aug 15; 416():125830. PubMed ID: 33865111
    [Abstract] [Full Text] [Related]

  • 20. Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO2 Sensors.
    Xia Y, Wang J, Xu JL, Li X, Xie D, Xiang L, Komarneni S.
    ACS Appl Mater Interfaces; 2016 Dec 28; 8(51):35454-35463. PubMed ID: 27966870
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.