These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 31055624

  • 1. Transcript and metabolic adjustments triggered by drought in Ilex paraguariensis leaves.
    Acevedo RM, Avico EH, González S, Salvador AR, Rivarola M, Paniego N, Nunes-Nesi A, Ruiz OA, Sansberro PA.
    Planta; 2019 Aug; 250(2):445-462. PubMed ID: 31055624
    [Abstract] [Full Text] [Related]

  • 2. Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles.
    Fay JV, Watkins CJ, Shrestha RK, Litwiñiuk SL, Talavera Stefani LN, Rojas CA, Argüelles CF, Ferreras JA, Caccamo M, Miretti MM.
    BMC Genomics; 2018 Dec 07; 19(1):891. PubMed ID: 30526481
    [Abstract] [Full Text] [Related]

  • 3. Integrating Transcriptional, Metabolic, and Physiological Responses to Drought Stress in Ilex paraguariensis Roots.
    Avico EH, Acevedo RM, Duarte MJ, Rodrigues Salvador A, Nunes-Nesi A, Ruiz OA, Sansberro PA.
    Plants (Basel); 2023 Jun 21; 12(13):. PubMed ID: 37446965
    [Abstract] [Full Text] [Related]

  • 4. A succinate dehydrogenase flavoprotein subunit-like transcript is upregulated in Ilex paraguariensis leaves in response to water deficit and abscisic acid.
    Acevedo RM, Maiale SJ, Pessino SC, Bottini R, Ruiz OA, Sansberro PA.
    Plant Physiol Biochem; 2013 Apr 21; 65():48-54. PubMed ID: 23416495
    [Abstract] [Full Text] [Related]

  • 5. Physiological and transcriptional regulation in poplar roots and leaves during acclimation to high temperature and drought.
    Jia J, Li S, Cao X, Li H, Shi W, Polle A, Liu TX, Peng C, Luo ZB.
    Physiol Plant; 2016 May 21; 157(1):38-53. PubMed ID: 26497326
    [Abstract] [Full Text] [Related]

  • 6. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots.
    Fan W, Zhao M, Li S, Bai X, Li J, Meng H, Mu Z.
    BMC Plant Biol; 2016 Apr 21; 16():99. PubMed ID: 27101806
    [Abstract] [Full Text] [Related]

  • 7. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance.
    Kuromori T, Fujita M, Takahashi F, Yamaguchi-Shinozaki K, Shinozaki K.
    Plant J; 2022 Jan 21; 109(2):342-358. PubMed ID: 34863007
    [Abstract] [Full Text] [Related]

  • 8. Exploring the genes of yerba mate (Ilex paraguariensis A. St.-Hil.) by NGS and de novo transcriptome assembly.
    Debat HJ, Grabiele M, Aguilera PM, Bubillo RE, Otegui MB, Ducasse DA, Zapata PD, Marti DA.
    PLoS One; 2014 Jan 21; 9(10):e109835. PubMed ID: 25330175
    [Abstract] [Full Text] [Related]

  • 9. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance.
    Hopper DW, Ghan R, Schlauch KA, Cramer GR.
    BMC Plant Biol; 2016 May 23; 16(1):118. PubMed ID: 27215785
    [Abstract] [Full Text] [Related]

  • 10. Physiological Characteristic Changes and Full-Length Transcriptome of Rose (Rosa chinensis) Roots and Leaves in Response to Drought Stress.
    Li W, Fu L, Geng Z, Zhao X, Liu Q, Jiang X.
    Plant Cell Physiol; 2021 Feb 04; 61(12):2153-2166. PubMed ID: 33165546
    [Abstract] [Full Text] [Related]

  • 11. Involvement of abscisic acid-responsive element-binding factors in cassava (Manihot esculenta) dehydration stress response.
    Feng RJ, Ren MY, Lu LF, Peng M, Guan X, Zhou DB, Zhang MY, Qi DF, Li K, Tang W, Yun TY, Chen YF, Wang F, Zhang D, Shen Q, Liang P, Zhang YD, Xie JH.
    Sci Rep; 2019 Sep 02; 9(1):12661. PubMed ID: 31477771
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses.
    Cho SK, Ryu MY, Seo DH, Kang BG, Kim WT.
    Plant Physiol; 2011 Dec 02; 157(4):2240-57. PubMed ID: 21969385
    [Abstract] [Full Text] [Related]

  • 16. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits.
    Morgil H, Tardu M, Cevahir G, Kavakli İH.
    Funct Integr Genomics; 2019 Sep 02; 19(5):715-727. PubMed ID: 31001704
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Root Physiological Traits and Transcriptome Analyses Reveal that Root Zone Water Retention Confers Drought Tolerance to Opisthopappus taihangensis.
    Yang Y, Guo Y, Zhong J, Zhang T, Li D, Ba T, Xu T, Chang L, Zhang Q, Sun M.
    Sci Rep; 2020 Feb 14; 10(1):2627. PubMed ID: 32060321
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses.
    Li R, Su X, Zhou R, Zhang Y, Wang T.
    BMC Plant Biol; 2022 Jan 17; 22(1):36. PubMed ID: 35039015
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.