These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 31063427

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Solid Renal Cell Carcinoma Measuring Water Attenuation (-10 to 20 HU) on Unenhanced CT.
    Schieda N, Vakili M, Dilauro M, Hodgdon T, Flood TA, Shabana WM.
    AJR Am J Roentgenol; 2015 Dec; 205(6):1215-21. PubMed ID: 26587928
    [Abstract] [Full Text] [Related]

  • 24. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma.
    Ding J, Xing Z, Jiang Z, Chen J, Pan L, Qiu J, Xing W.
    Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385
    [Abstract] [Full Text] [Related]

  • 25. Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis.
    Erdim C, Yardimci AH, Bektas CT, Kocak B, Koca SB, Demir H, Kilickesmez O.
    Acad Radiol; 2020 Oct; 27(10):1422-1429. PubMed ID: 32014404
    [Abstract] [Full Text] [Related]

  • 26. Diagnosis of Sarcomatoid Renal Cell Carcinoma With CT: Evaluation by Qualitative Imaging Features and Texture Analysis.
    Schieda N, Thornhill RE, Al-Subhi M, McInnes MD, Shabana WM, van der Pol CB, Flood TA.
    AJR Am J Roentgenol; 2015 May; 204(5):1013-23. PubMed ID: 25905936
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Comparison of Contrast-Enhanced Multiphase Renal Protocol CT Versus MRI for Diagnosis of Papillary Renal Cell Carcinoma.
    Dilauro M, Quon M, McInnes MD, Vakili M, Chung A, Flood TA, Schieda N.
    AJR Am J Roentgenol; 2016 Feb; 206(2):319-25. PubMed ID: 26797358
    [Abstract] [Full Text] [Related]

  • 31. Diagnostic Accuracy of Unenhanced CT Analysis to Differentiate Low-Grade From High-Grade Chromophobe Renal Cell Carcinoma.
    Schieda N, Lim RS, Krishna S, McInnes MDF, Flood TA, Thornhill RE.
    AJR Am J Roentgenol; 2018 May; 210(5):1079-1087. PubMed ID: 29547054
    [Abstract] [Full Text] [Related]

  • 32. Fuhrman nuclear grade prediction of clear cell renal cell carcinoma: influence of volume of interest delineation strategies on machine learning-based dynamic enhanced CT radiomics analysis.
    Luo S, Wei R, Lu S, Lai S, Wu J, Wu Z, Pang X, Wei X, Jiang X, Zhen X, Yang R.
    Eur Radiol; 2022 Apr; 32(4):2340-2350. PubMed ID: 34636962
    [Abstract] [Full Text] [Related]

  • 33. Dual-phase helical CT of the kidney: value of the corticomedullary and nephrographic phase for evaluation of renal lesions and preoperative staging of renal cell carcinoma.
    Kopka L, Fischer U, Zoeller G, Schmidt C, Ringert RH, Grabbe E.
    AJR Am J Roentgenol; 1997 Dec; 169(6):1573-8. PubMed ID: 9393168
    [Abstract] [Full Text] [Related]

  • 34. Differentiation of Benign From Metastatic Adrenal Masses in Patients With Renal Cell Carcinoma on Contrast-Enhanced CT.
    Sasaguri K, Takahashi N, Takeuchi M, Carter RE, Leibovich BC, Kawashima A.
    AJR Am J Roentgenol; 2016 Nov; 207(5):1031-1038. PubMed ID: 27556736
    [Abstract] [Full Text] [Related]

  • 35. Juxtatumoral perinephric fat analysis in clear cell renal cell carcinoma.
    Gill TS, Varghese BA, Hwang DH, Cen SY, Aron M, Aron M, Duddalwar VA.
    Abdom Radiol (NY); 2019 Apr; 44(4):1470-1480. PubMed ID: 30506142
    [Abstract] [Full Text] [Related]

  • 36. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.
    Altazi BA, Zhang GG, Fernandez DC, Montejo ME, Hunt D, Werner J, Biagioli MC, Moros EG.
    J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217
    [Abstract] [Full Text] [Related]

  • 37. Reproducibility for Hepatocellular Carcinoma CT Radiomic Features: Influence of Delineation Variability Based on 3D-CT, 4D-CT and Multiple-Parameter MR Images.
    Duan J, Qiu Q, Zhu J, Shang D, Dou X, Sun T, Yin Y, Meng X.
    Front Oncol; 2022 Nov; 12():881931. PubMed ID: 35494061
    [Abstract] [Full Text] [Related]

  • 38. Intraobserver and interobserver variability in computed tomography size and attenuation measurements in patients with renal cell carcinoma receiving antiangiogenic therapy: implications for alternative response criteria.
    Krajewski KM, Nishino M, Franchetti Y, Ramaiya NH, Van den Abbeele AD, Choueiri TK.
    Cancer; 2014 Mar 01; 120(5):711-21. PubMed ID: 24264883
    [Abstract] [Full Text] [Related]

  • 39. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS, Hong H, Jung DC, Park S, Kim J.
    Med Phys; 2017 Jul 01; 44(7):3604-3614. PubMed ID: 28376281
    [Abstract] [Full Text] [Related]

  • 40. Small (< 4 cm) Renal Masses: Differentiation of Angiomyolipoma Without Visible Fat From Renal Cell Carcinoma Using Unenhanced and Contrast-Enhanced CT.
    Takahashi N, Leng S, Kitajima K, Gomez-Cardona D, Thapa P, Carter RE, Leibovich BC, Sasiwimonphan K, Sasaguri K, Kawashima A.
    AJR Am J Roentgenol; 2015 Dec 01; 205(6):1194-202. PubMed ID: 26587925
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.