These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 31065402

  • 1. Scattering-independent glucose absorption measurement using a spectrally resolved reflectance setup with specialized variable source-detector separations.
    Liu J, Zhu C, Jiang J, Xu K.
    Biomed Opt Express; 2018 Dec 01; 9(12):5903-5914. PubMed ID: 31065402
    [Abstract] [Full Text] [Related]

  • 2. Specialized source-detector separations in near-infrared reflectance spectroscopy platform enable effective separation of diffusion and absorption for glucose sensing.
    Liu J, Han T, Jiang J, Xu K.
    Biomed Opt Express; 2019 Sep 01; 10(9):4839-4858. PubMed ID: 31565529
    [Abstract] [Full Text] [Related]

  • 3. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.
    Lee MW, Hung CH, Liao JL, Cheng NY, Hou MF, Tseng SH.
    Biomed Opt Express; 2014 Oct 01; 5(10):3628-39. PubMed ID: 25360378
    [Abstract] [Full Text] [Related]

  • 4. Influence of Lambertian surface scattering on the spatially resolved reflectance from turbid media: a computational study.
    Lindner B, Foschum F, Kienle A.
    Appl Opt; 2022 Apr 01; 61(10):2775-2787. PubMed ID: 35471353
    [Abstract] [Full Text] [Related]

  • 5. Distance insensitive reflectance setup for the spectrally resolved determination of the optical properties of highly turbid media.
    Hank P, Pink K, Junior LBDC, Foschum F, Kienle A.
    Appl Opt; 2022 Oct 10; 61(29):8737-8744. PubMed ID: 36256007
    [Abstract] [Full Text] [Related]

  • 6. Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media.
    Hayakawa CK, Spanier J, Venugopalan V.
    J Opt Soc Am A Opt Image Sci Vis; 2014 Feb 01; 31(2):301-11. PubMed ID: 24562029
    [Abstract] [Full Text] [Related]

  • 7. Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy.
    Chen YW, Guo JY, Tzeng SY, Chou TC, Lin MJ, Huang LL, Yang CC, Hsu CK, Tseng SH.
    Biomed Opt Express; 2016 Feb 01; 7(2):542-58. PubMed ID: 26977361
    [Abstract] [Full Text] [Related]

  • 8. Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.
    Kienle A, Patterson MS.
    Phys Med Biol; 1997 Sep 01; 42(9):1801-19. PubMed ID: 9308085
    [Abstract] [Full Text] [Related]

  • 9. Light distribution modulated diffuse reflectance spectroscopy.
    Huang PY, Chien CY, Sheu CR, Chen YW, Tseng SH.
    Biomed Opt Express; 2016 Jun 01; 7(6):2118-29. PubMed ID: 27375931
    [Abstract] [Full Text] [Related]

  • 10. Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms.
    Andree S, Reble C, Helfmann J, Gersonde I, Illing G.
    J Biomed Opt; 2010 Jun 01; 15(6):067009. PubMed ID: 21198213
    [Abstract] [Full Text] [Related]

  • 11. In vivo local determination of tissue optical properties: applications to human brain.
    Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C.
    Appl Opt; 1999 Aug 01; 38(22):4939-50. PubMed ID: 18323984
    [Abstract] [Full Text] [Related]

  • 12. Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media.
    Hayakawa CK, Hill BY, You JS, Bevilacqua F, Spanier J, Venugopalan V.
    Appl Opt; 2004 Aug 20; 43(24):4677-84. PubMed ID: 15352392
    [Abstract] [Full Text] [Related]

  • 13. Artificial neural networks for retrieving absorption and reduced scattering spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation.
    Chen YW, Chen CC, Huang PJ, Tseng SH.
    Biomed Opt Express; 2016 Apr 01; 7(4):1496-510. PubMed ID: 27446671
    [Abstract] [Full Text] [Related]

  • 14. Diagnosis of the phase function of random media from light reflectance.
    Xu M.
    Sci Rep; 2016 Mar 03; 6():22535. PubMed ID: 26935167
    [Abstract] [Full Text] [Related]

  • 15. Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation.
    Spinelli L, Martelli F, Del Bianco S, Pifferi A, Torricelli A, Cubeddu R, Zaccanti G.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug 03; 74(2 Pt 1):021919. PubMed ID: 17025484
    [Abstract] [Full Text] [Related]

  • 16. Separation of absorption and scattering properties of turbid media using relative spectrally resolved cw radiance measurements.
    Grabtchak S, Whelan WM.
    Biomed Opt Express; 2012 Oct 01; 3(10):2371-80. PubMed ID: 23082279
    [Abstract] [Full Text] [Related]

  • 17. Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations.
    Calabro KW, Bigio IJ.
    J Biomed Opt; 2014 Oct 01; 19(7):75005. PubMed ID: 25027000
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Direct estimation of the reduced scattering coefficient from experimentally measured time-resolved reflectance via Monte Carlo based lookup tables.
    Helton M, Mycek MA, Vishwanath K.
    Biomed Opt Express; 2020 Aug 01; 11(8):4366-4378. PubMed ID: 32923049
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.