These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1980 related items for PubMed ID: 31067212
1. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May 08; (147):. PubMed ID: 31067212 [Abstract] [Full Text] [Related]
2. Direct quantification of transendothelial electrical resistance in organs-on-chips. van der Helm MW, Odijk M, Frimat JP, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Biosens Bioelectron; 2016 Nov 15; 85():924-929. PubMed ID: 27315517 [Abstract] [Full Text] [Related]
3. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Maoz BM, Herland A, Henry OYF, Leineweber WD, Yadid M, Doyle J, Mannix R, Kujala VJ, FitzGerald EA, Parker KK, Ingber DE. Lab Chip; 2017 Jun 27; 17(13):2294-2302. PubMed ID: 28608907 [Abstract] [Full Text] [Related]
4. Microfluidic assay for the on-chip electrochemical measurement of cell monolayer permeability. Wong JF, Simmons CA. Lab Chip; 2019 Mar 13; 19(6):1060-1070. PubMed ID: 30778462 [Abstract] [Full Text] [Related]
5. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. Tan HY, Trier S, Rahbek UL, Dufva M, Kutter JP, Andresen TL. PLoS One; 2018 Mar 13; 13(5):e0197101. PubMed ID: 29746551 [Abstract] [Full Text] [Related]
6. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. Odijk M, van der Meer AD, Levner D, Kim HJ, van der Helm MW, Segerink LI, Frimat JP, Hamilton GA, Ingber DE, van den Berg A. Lab Chip; 2015 Feb 07; 15(3):745-52. PubMed ID: 25427650 [Abstract] [Full Text] [Related]
7. The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers: A Paracellular Modeling Approach. Antonescu IE, Rasmussen KF, Neuhoff S, Fretté X, Karlgren M, Bergström CAS, Nielsen CU, Steffansen B. Mol Pharm; 2019 Nov 04; 16(11):4636-4650. PubMed ID: 31560549 [Abstract] [Full Text] [Related]
13. Organ-on-a-Chip Platform with an Integrated Screen-Printed Electrode Array for Real-Time Monitoring Trans-Epithelial Barrier and Bubble Formation. Krishnakumar A, Kadian S, Heredia Rivera U, Chittiboyina S, Lelièvre SA, Rahimi R. ACS Biomater Sci Eng; 2023 Mar 13; 9(3):1620-1628. PubMed ID: 36763005 [Abstract] [Full Text] [Related]
14. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability. Madgula VL, Avula B, Reddy V L N, Khan IA, Khan SI. Planta Med; 2007 Apr 13; 73(4):330-5. PubMed ID: 17372866 [Abstract] [Full Text] [Related]
15. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong JS, Huh D. J Matern Fetal Neonatal Med; 2016 Apr 13; 29(7):1046-54. PubMed ID: 26075842 [Abstract] [Full Text] [Related]
16. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr 30; (146):. PubMed ID: 31038480 [Abstract] [Full Text] [Related]
17. Microfluidic platform for rapid measurement of transepithelial water transport. Jin BJ, Verkman AS. Lab Chip; 2017 Feb 28; 17(5):887-895. PubMed ID: 28184395 [Abstract] [Full Text] [Related]