These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


337 related items for PubMed ID: 31067524

  • 1. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film.
    Gao M, Lin X, Li Z, Wang X, Qiao Y, Zhao H, Zhang J, Wang L.
    Nanotechnology; 2019 Aug 23; 30(34):345604. PubMed ID: 31067524
    [Abstract] [Full Text] [Related]

  • 2. Quantitative Surface-Enhanced Raman Spectroscopy through the Interface-Assisted Self-Assembly of Three-Dimensional Silver Nanorod Substrates.
    Liu SY, Tian XD, Zhang Y, Li JF.
    Anal Chem; 2018 Jun 19; 90(12):7275-7282. PubMed ID: 29772173
    [Abstract] [Full Text] [Related]

  • 3. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M, Phang IY, Lee MR, Yang JK, Ling XY.
    Langmuir; 2013 Jun 11; 29(23):7061-9. PubMed ID: 23706081
    [Abstract] [Full Text] [Related]

  • 4. [Surface Enhanced Raman Spectroscopic Studies on the Coupling Effect of Multilayer Au@SiO2 Film].
    Hu DJ, Zhang XJ, Xu MM, Yao JL, Gu RA.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May 11; 35(5):1262-5. PubMed ID: 26415440
    [Abstract] [Full Text] [Related]

  • 5. Interfacial layer-by-layer self-assembly of PS nanospheres and Au@Ag nanorods for fabrication of broadband and sensitive SERS substrates.
    Li X, Lin X, Fang G, Dong H, Li J, Cong S, Wang L, Yang S.
    J Colloid Interface Sci; 2022 Aug 15; 620():388-398. PubMed ID: 35436620
    [Abstract] [Full Text] [Related]

  • 6. Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate.
    Guo Q, Xu M, Yuan Y, Gu R, Yao J.
    Langmuir; 2016 May 10; 32(18):4530-7. PubMed ID: 27101361
    [Abstract] [Full Text] [Related]

  • 7. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance.
    Li L, Chin WS.
    ACS Appl Mater Interfaces; 2020 Aug 19; 12(33):37538-37548. PubMed ID: 32701289
    [Abstract] [Full Text] [Related]

  • 8. Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection.
    Wen P, Yang F, Ge C, Li S, Xu Y, Chen L.
    Nanotechnology; 2021 Jul 09; 32(39):. PubMed ID: 34161934
    [Abstract] [Full Text] [Related]

  • 9. Synthesis of Monolayer Gold Nanorings Sandwich Film and Its Higher Surface-Enhanced Raman Scattering Intensity.
    Zhang L, Zhu T, Yang C, Jang HY, Jang HJ, Liu L, Park S.
    Nanomaterials (Basel); 2020 Mar 13; 10(3):. PubMed ID: 32183019
    [Abstract] [Full Text] [Related]

  • 10. Green in Situ Synthesis of Clean 3D Chestnutlike Ag/WO3-x Nanostructures for Highly Efficient, Recyclable and Sensitive SERS Sensing.
    Huang J, Ma D, Chen F, Chen D, Bai M, Xu K, Zhao Y.
    ACS Appl Mater Interfaces; 2017 Mar 01; 9(8):7436-7446. PubMed ID: 28177604
    [Abstract] [Full Text] [Related]

  • 11. Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array.
    Zhang W, Xue T, Zhang L, Lu F, Liu M, Meng C, Mao D, Mei T.
    Sensors (Basel); 2019 Sep 14; 19(18):. PubMed ID: 31540010
    [Abstract] [Full Text] [Related]

  • 12. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism.
    Tognalli NG, Cortés E, Hernández-Nieves AD, Carro P, Usaj G, Balseiro CA, Vela ME, Salvarezza RC, Fainstein A.
    ACS Nano; 2011 Jul 26; 5(7):5433-43. PubMed ID: 21675769
    [Abstract] [Full Text] [Related]

  • 13. Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering.
    Li C, Liu A, Zhang C, Wang M, Li Z, Xu S, Jiang S, Yu J, Yang C, Man B.
    Opt Express; 2017 Aug 21; 25(17):20631-20641. PubMed ID: 29041742
    [Abstract] [Full Text] [Related]

  • 14. Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection.
    Kim S, Mun C, Choi DG, Jung HS, Kim DH, Kim SH, Park SG.
    Nanomaterials (Basel); 2020 May 14; 10(5):. PubMed ID: 32422860
    [Abstract] [Full Text] [Related]

  • 15. Three-Dimensional Hierarchical Reticular Nanostructure of Fulfora candelaria Wing Decorated by Ag Nanoislands as Practical SERS-Active Substrates.
    Wang M, Wang Y, Yan X, Sun X, Shi G, Zhang K, Ren L, Ma W.
    Nanomaterials (Basel); 2018 Nov 05; 8(11):. PubMed ID: 30400593
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance.
    Li H, Merkl P, Sommertune J, Thersleff T, Sotiriou GA.
    Adv Sci (Weinh); 2022 Aug 05; 9(22):e2201133. PubMed ID: 35670133
    [Abstract] [Full Text] [Related]

  • 20. A large-scale superhydrophobic surface-enhanced Raman scattering (SERS) platform fabricated via capillary force lithography and assembly of Ag nanocubes for ultratrace molecular sensing.
    Tan JM, Ruan JJ, Lee HK, Phang IY, Ling XY.
    Phys Chem Chem Phys; 2014 Dec 28; 16(48):26983-90. PubMed ID: 25380327
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.