These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 31069771

  • 1. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS.
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [Abstract] [Full Text] [Related]

  • 2. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications.
    Guo J, Gaffrey MJ, Su D, Liu T, Camp DG, Smith RD, Qian WJ.
    Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471
    [Abstract] [Full Text] [Related]

  • 3. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J, Carroll KS, Liebler DC.
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [Abstract] [Full Text] [Related]

  • 4. Site-Specific Proteomic Mapping Identifies Selectively Modified Regulatory Cysteine Residues in Functionally Distinct Protein Networks.
    Gould NS, Evans P, Martínez-Acedo P, Marino SM, Gladyshev VN, Carroll KS, Ischiropoulos H.
    Chem Biol; 2015 Jul 23; 22(7):965-75. PubMed ID: 26165157
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.
    Su D, Gaffrey MJ, Guo J, Hatchell KE, Chu RK, Clauss TR, Aldrich JT, Wu S, Purvine S, Camp DG, Smith RD, Thrall BD, Qian WJ.
    Free Radic Biol Med; 2014 Feb 23; 67():460-70. PubMed ID: 24333276
    [Abstract] [Full Text] [Related]

  • 7. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay.
    Murray CI, Uhrigshardt H, O'Meally RN, Cole RN, Van Eyk JE.
    Mol Cell Proteomics; 2012 Feb 23; 11(2):M111.013441. PubMed ID: 22126794
    [Abstract] [Full Text] [Related]

  • 8. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y, Carroll KS.
    Acc Chem Res; 2020 Jan 21; 53(1):20-31. PubMed ID: 31869209
    [Abstract] [Full Text] [Related]

  • 9. Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics.
    Guo J, Nguyen AY, Dai Z, Su D, Gaffrey MJ, Moore RJ, Jacobs JM, Monroe ME, Smith RD, Koppenaal DW, Pakrasi HB, Qian WJ.
    Mol Cell Proteomics; 2014 Dec 21; 13(12):3270-85. PubMed ID: 25118246
    [Abstract] [Full Text] [Related]

  • 10. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ.
    Anal Chem; 2013 Apr 02; 85(7):3774-80. PubMed ID: 23438843
    [Abstract] [Full Text] [Related]

  • 11. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures.
    Hao G, Derakhshan B, Shi L, Campagne F, Gross SS.
    Proc Natl Acad Sci U S A; 2006 Jan 24; 103(4):1012-7. PubMed ID: 16418269
    [Abstract] [Full Text] [Related]

  • 12. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE.
    Izquierdo-Álvarez A, Martínez-Ruiz A.
    J Proteomics; 2011 Dec 21; 75(2):329-38. PubMed ID: 21983555
    [Abstract] [Full Text] [Related]

  • 13. Characterization of cellular oxidative stress response by stoichiometric redox proteomics.
    Zhang T, Gaffrey MJ, Li X, Qian WJ.
    Am J Physiol Cell Physiol; 2021 Feb 01; 320(2):C182-C194. PubMed ID: 33264075
    [Abstract] [Full Text] [Related]

  • 14. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W, Tedesco S, Faedda R, Petrone G, Cacciola SO, O'Keefe A, Sheehan D.
    Talanta; 2010 Feb 15; 80(4):1569-75. PubMed ID: 20082816
    [Abstract] [Full Text] [Related]

  • 15. Thiol redox proteomics: Characterization of thiol-based post-translational modifications.
    Li X, Gluth A, Zhang T, Qian WJ.
    Proteomics; 2023 Jul 15; 23(13-14):e2200194. PubMed ID: 37248656
    [Abstract] [Full Text] [Related]

  • 16. Direct Proteomic Mapping of Cysteine Persulfidation.
    Fu L, Liu K, He J, Tian C, Yu X, Yang J.
    Antioxid Redox Signal; 2020 Nov 20; 33(15):1061-1076. PubMed ID: 31411056
    [Abstract] [Full Text] [Related]

  • 17. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L, Robinson RA.
    Proteomics Clin Appl; 2016 Dec 20; 10(12):1159-1177. PubMed ID: 27666938
    [Abstract] [Full Text] [Related]

  • 18. Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.
    Vogelsang L, Eirich J, Finkemeier I, Dietz KJ.
    Methods Mol Biol; 2024 Dec 20; 2832():99-113. PubMed ID: 38869790
    [Abstract] [Full Text] [Related]

  • 19. Mapping the cysteine proteome: analysis of redox-sensing thiols.
    Jones DP, Go YM.
    Curr Opin Chem Biol; 2011 Feb 20; 15(1):103-12. PubMed ID: 21216657
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.