These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
266 related items for PubMed ID: 31070481
1. Use of Iodine Concentration in the Lipid-Poor Portion of the Renal Mass for Differentiation of Angiomyolipoma from Renal Cell Carcinoma. Sun J, Zhang XY, Li XT, Li YL, Wang ZL. Cancer Biother Radiopharm; 2019 May; 34(4):224-230. PubMed ID: 31070481 [Abstract] [Full Text] [Related]
2. Quantitative computer-aided diagnostic algorithm for automated detection of peak lesion attenuation in differentiating clear cell from papillary and chromophobe renal cell carcinoma, oncocytoma, and fat-poor angiomyolipoma on multiphasic multidetector computed tomography. Coy H, Young JR, Douek ML, Brown MS, Sayre J, Raman SS. Abdom Radiol (NY); 2017 Jul; 42(7):1919-1928. PubMed ID: 28280876 [Abstract] [Full Text] [Related]
3. Angiomyolipoma with minimal fat: differentiation from renal cell carcinoma at biphasic helical CT. Kim JK, Park SY, Shon JH, Cho KS. Radiology; 2004 Mar; 230(3):677-84. PubMed ID: 14990834 [Abstract] [Full Text] [Related]
4. Differentiation of Clear Cell Renal Cell Carcinoma From Other Subtypes and Fat-Poor Angiomyolipoma by Use of Quantitative Enhancement Measurement During Three-Phase MDCT. Kim SH, Kim CS, Kim MJ, Cho JY, Cho SH. AJR Am J Roentgenol; 2016 Jan; 206(1):W21-8. PubMed ID: 26700359 [Abstract] [Full Text] [Related]
5. Subjective and objective heterogeneity scores for differentiating small renal masses using contrast-enhanced CT. Leng S, Takahashi N, Gomez Cardona D, Kitajima K, McCollough B, Li Z, Kawashima A, Leibovich BC, McCollough CH. Abdom Radiol (NY); 2017 May; 42(5):1485-1492. PubMed ID: 28025654 [Abstract] [Full Text] [Related]
6. Fat poor angiomyolipoma differentiation from renal cell carcinoma at 320-slice dynamic volume CT perfusion. Chen C, Kang Q, Xu B, Shi Z, Guo H, Wei Q, Lu Y, Wu X. Abdom Radiol (NY); 2018 May; 43(5):1223-1230. PubMed ID: 28828638 [Abstract] [Full Text] [Related]
7. Are there useful CT features to differentiate renal cell carcinoma from lipid-poor renal angiomyolipoma? Yang CW, Shen SH, Chang YH, Chung HJ, Wang JH, Lin AT, Chen KK. AJR Am J Roentgenol; 2013 Nov; 201(5):1017-28. PubMed ID: 24147472 [Abstract] [Full Text] [Related]
10. Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. Yan L, Liu Z, Wang G, Huang Y, Liu Y, Yu Y, Liang C. Acad Radiol; 2015 Sep; 22(9):1115-21. PubMed ID: 26031228 [Abstract] [Full Text] [Related]
13. Diagnosis of renal angiomyolipoma with hounsfield unit thresholds: effect of size of region of interest and nephrographic phase imaging. Davenport MS, Neville AM, Ellis JH, Cohan RH, Chaudhry HS, Leder RA. Radiology; 2011 Jul; 260(1):158-65. PubMed ID: 21555349 [Abstract] [Full Text] [Related]
14. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Yang R, Wu J, Sun L, Lai S, Xu Y, Liu X, Ma Y, Zhen X. Eur Radiol; 2020 Feb; 30(2):1254-1263. PubMed ID: 31468159 [Abstract] [Full Text] [Related]
15. Alkaline phosphatase combines with CT factors for differentiating small (≤ 4 cm) fat-poor angiomyolipoma from renal cell carcinoma: a multiple quantitative tool. Peng T, Fan J, Xie B, Wang Q, Chen Y, Li Y, Wu K, Feng C, Li T, Chen H, Pu X, Liu J. World J Urol; 2023 May; 41(5):1345-1351. PubMed ID: 37093317 [Abstract] [Full Text] [Related]
16. Differentiation of renal angiomyolipoma without visible fat from small clear cell renal cell carcinoma by using specific region of interest on contrast-enhanced CT: a new combination of quantitative tools. Wang X, Song G, Jiang H. Cancer Imaging; 2021 Jul 05; 21(1):47. PubMed ID: 34225784 [Abstract] [Full Text] [Related]