These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 31071454

  • 1. Invited review: Quantifying proton exchange from chemical reactions - Implications for the biochemistry of metabolic acidosis.
    Robergs RA.
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():29-45. PubMed ID: 31071454
    [Abstract] [Full Text] [Related]

  • 2. Quantifying H+ exchange from muscle cytosolic energy catabolism using metabolite flux and H+ coefficients from multiple competitive cation binding: New evidence for consideration in established theories.
    Robergs RA.
    Physiol Rep; 2021 Apr; 9(7):e14728. PubMed ID: 33904663
    [Abstract] [Full Text] [Related]

  • 3. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle.
    Robergs RA.
    PLoS One; 2017 Apr; 12(12):e0189822. PubMed ID: 29267370
    [Abstract] [Full Text] [Related]

  • 4. [The Stewart model. "Modern" approach to the interpretation of the acid-base metabolism].
    Rehm M, Conzen PF, Peter K, Finsterer U.
    Anaesthesist; 2004 Apr; 53(4):347-57. PubMed ID: 15088097
    [Abstract] [Full Text] [Related]

  • 5. The meaning of acid-base abnormalities in the intensive care unit: part III -- effects of fluid administration.
    Morgan TJ.
    Crit Care; 2005 Apr; 9(2):204-11. PubMed ID: 15774079
    [Abstract] [Full Text] [Related]

  • 6. Biochemistry of exercise-induced metabolic acidosis.
    Robergs RA, Ghiasvand F, Parker D.
    Am J Physiol Regul Integr Comp Physiol; 2004 Sep; 287(3):R502-16. PubMed ID: 15308499
    [Abstract] [Full Text] [Related]

  • 7. [What is the contribution of Stewart's concept in acid-base disorders analysis?].
    Quintard H, Hubert S, Ichai C.
    Ann Fr Anesth Reanim; 2007 May; 26(5):423-33. PubMed ID: 17462852
    [Abstract] [Full Text] [Related]

  • 8. The interstitial pH of the working gastrocnemius muscle of the dog.
    Steinhagen C, Hirche HJ, Nestle HW, Bovenkamp U, Hosselmann I.
    Pflugers Arch; 1976 Dec 28; 367(2):151-6. PubMed ID: 13344
    [Abstract] [Full Text] [Related]

  • 9. Combined glycolytic production of lactate(-) and ATP(4-) derived protons (= dissociated lactic acid) is the only cause of metabolic acidosis of exercise--a note on the OH(-) absorbing function of lactate (1-) production.
    Moll W, Gros G.
    J Appl Physiol (1985); 2008 Jul 28; 105(1):365. PubMed ID: 18680794
    [No Abstract] [Full Text] [Related]

  • 10. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J, Juel C, Hellsten Y, Saltin B.
    J Physiol; 1997 Oct 15; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [Abstract] [Full Text] [Related]

  • 11. Lactic acid permeation rate in working gastrocnemii of dogs during metabolic alkalosis and acidosis.
    Hirche HJ, Hombach V, Langohr HD, Wacker U, Busse J.
    Pflugers Arch; 1975 Oct 15; 356(3):209-22. PubMed ID: 239385
    [Abstract] [Full Text] [Related]

  • 12. A critique of Stewart's approach: the chemical mechanism of dilutional acidosis.
    Doberer D, Funk GC, Kirchner K, Schneeweiss B.
    Intensive Care Med; 2009 Dec 15; 35(12):2173-80. PubMed ID: 19533091
    [Abstract] [Full Text] [Related]

  • 13. Temperature and pH dependence of energy balance by (31)P- and (1)H-MRS in anaerobic frog muscle.
    Vezzoli A, Gussoni M, Greco F, Zetta L, Cerretelli P.
    Biochim Biophys Acta; 2004 Feb 15; 1608(2-3):163-70. PubMed ID: 14871494
    [Abstract] [Full Text] [Related]

  • 14. Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle.
    Marcinek DJ, Kushmerick MJ, Conley KE.
    J Appl Physiol (1985); 2010 Jun 15; 108(6):1479-86. PubMed ID: 20133437
    [Abstract] [Full Text] [Related]

  • 15. Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans.
    Messonnier L, Kristensen M, Juel C, Denis C.
    J Appl Physiol (1985); 2007 May 15; 102(5):1936-44. PubMed ID: 17289910
    [Abstract] [Full Text] [Related]

  • 16. Effects of metabolic alkalosis, metabolic acidosis and uraemia on whole-body intracellular pH in man.
    Tizianello A, De Ferrari G, Gurreri G, Acquarone N.
    Clin Sci Mol Med; 1977 Feb 15; 52(2):125-35. PubMed ID: 14803
    [Abstract] [Full Text] [Related]

  • 17. Last word on point:counterpoint: lactate is/is not the only physicochemical contributor to the acidosis of exercise.
    Lindinger MI, Heigenhauser GJ.
    J Appl Physiol (1985); 2008 Jul 15; 105(1):369. PubMed ID: 18641217
    [No Abstract] [Full Text] [Related]

  • 18. Regulation of AE1 anion exchanger and H(+)-ATPase in rat cortex by acute metabolic acidosis and alkalosis.
    Sabolić I, Brown D, Gluck SL, Alper SL.
    Kidney Int; 1997 Jan 15; 51(1):125-37. PubMed ID: 8995726
    [Abstract] [Full Text] [Related]

  • 19. The Computational Acid-Base Chemistry of Hepatic Ketoacidosis.
    Torrens SL, Robergs RA, Curry SC, Nalos M.
    Metabolites; 2023 Jun 28; 13(7):. PubMed ID: 37512510
    [Abstract] [Full Text] [Related]

  • 20. Regulation of Na/H exchange in renal microvillus vesicles in chronic hypercapnia.
    Zeidel ML, Seifter JL.
    Kidney Int; 1988 Jul 28; 34(1):60-6. PubMed ID: 2845183
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.