These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


756 related items for PubMed ID: 31075850

  • 21. Consumption of Wild Rice (Zizania latifolia) Prevents Metabolic Associated Fatty Liver Disease through the Modulation of the Gut Microbiota in Mice Model.
    Hou XD, Yan N, Du YM, Liang H, Zhang ZF, Yuan XL.
    Int J Mol Sci; 2020 Jul 29; 21(15):. PubMed ID: 32751062
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier.
    Van Hul M, Geurts L, Plovier H, Druart C, Everard A, Ståhlman M, Rhimi M, Chira K, Teissedre PL, Delzenne NM, Maguin E, Guilbot A, Brochot A, Gérard P, Bäckhed F, Cani PD.
    Am J Physiol Endocrinol Metab; 2018 Apr 01; 314(4):E334-E352. PubMed ID: 28874357
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Puerarin Modulates Hepatic Farnesoid X Receptor and Gut Microbiota in High-Fat Diet-Induced Obese Mice.
    Yang CW, Liu HM, Chang ZY, Liu GH, Chang HH, Huang PY, Lee TY.
    Int J Mol Sci; 2024 May 12; 25(10):. PubMed ID: 38791314
    [Abstract] [Full Text] [Related]

  • 26. Neohesperidin attenuates obesity by altering the composition of the gut microbiota in high-fat diet-fed mice.
    Lu JF, Zhu MQ, Zhang H, Liu H, Xia B, Wang YL, Shi X, Peng L, Wu JW.
    FASEB J; 2020 Sep 12; 34(9):12053-12071. PubMed ID: 32729978
    [Abstract] [Full Text] [Related]

  • 27. Antibiotics-induced perturbations in gut microbial diversity influence metabolic phenotypes in a murine model of high-fat diet-induced obesity.
    Liu D, Wen B, Zhu K, Luo Y, Li J, Li Y, Lin H, Huang J, Liu Z.
    Appl Microbiol Biotechnol; 2019 Jul 12; 103(13):5269-5283. PubMed ID: 31020379
    [Abstract] [Full Text] [Related]

  • 28. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats.
    Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP, Martínez JA, Milagro FI.
    J Nutr Biochem; 2015 Jun 12; 26(6):651-60. PubMed ID: 25762527
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Allicin Improves Metabolism in High-Fat Diet-Induced Obese Mice by Modulating the Gut Microbiota.
    Shi X, Zhou X, Chu X, Wang J, Xie B, Ge J, Guo Y, Li X, Yang G.
    Nutrients; 2019 Dec 02; 11(12):. PubMed ID: 31810206
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Short Term High Fat Diet Induces Obesity-Enhancing Changes in Mouse Gut Microbiota That are Partially Reversed by Cessation of the High Fat Diet.
    Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, Siow YL, O K.
    Lipids; 2017 Jun 02; 52(6):499-511. PubMed ID: 28429150
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice.
    Xiao L, Sonne SB, Feng Q, Chen N, Xia Z, Li X, Fang Z, Zhang D, Fjære E, Midtbø LK, Derrien M, Hugenholtz F, Tang L, Li J, Zhang J, Liu C, Hao Q, Vogel UB, Mortensen A, Kleerebezem M, Licht TR, Yang H, Wang J, Li Y, Arumugam M, Wang J, Madsen L, Kristiansen K.
    Microbiome; 2017 Apr 08; 5(1):43. PubMed ID: 28390422
    [Abstract] [Full Text] [Related]

  • 36. Jamun (Eugenia jambolana Lam.) Fruit Extract Prevents Obesity by Modulating the Gut Microbiome in High-Fat-Diet-Fed Mice.
    Xu J, Liu T, Li Y, Liu W, Ding Z, Ma H, Seeram NP, Mu Y, Huang X, Li L.
    Mol Nutr Food Res; 2019 May 08; 63(9):e1801307. PubMed ID: 30762938
    [Abstract] [Full Text] [Related]

  • 37. Beneficial metabolic effects of PAHSAs depend on the gut microbiota in diet-induced obese mice but not in chow-fed mice.
    Lee J, Wellenstein K, Rahnavard A, Nelson AT, Holter MM, Cummings BP, Yeliseyev V, Castoldi A, Clish CB, Bry L, Siegel D, Kahn BB.
    Proc Natl Acad Sci U S A; 2024 Jul 09; 121(28):e2318691121. PubMed ID: 38968121
    [Abstract] [Full Text] [Related]

  • 38. A Role for Timp3 in Microbiota-Driven Hepatic Steatosis and Metabolic Dysfunction.
    Mavilio M, Marchetti V, Fabrizi M, Stöhr R, Marino A, Casagrande V, Fiorentino L, Cardellini M, Kappel B, Monteleone I, Garret C, Mauriello A, Monteleone G, Farcomeni A, Burcelin R, Menghini R, Federici M.
    Cell Rep; 2016 Jul 19; 16(3):731-43. PubMed ID: 27373162
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice.
    Neyrinck AM, Possemiers S, Verstraete W, De Backer F, Cani PD, Delzenne NM.
    J Nutr Biochem; 2012 Jan 19; 23(1):51-9. PubMed ID: 21411304
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 38.