These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Open chest cardiac massage offers no benefit over closed chest compressions in patients with traumatic cardiac arrest. Bradley MJ, Bonds BW, Chang L, Yang S, Hu P, Li HC, Brenner ML, Scalea TM, Stein DM. J Trauma Acute Care Surg; 2016 Nov; 81(5):849-854. PubMed ID: 27537507 [Abstract] [Full Text] [Related]
3. End-Tidal CO2-Guided Chest Compression Delivery Improves Survival in a Neonatal Asphyxial Cardiac Arrest Model. Hamrick JT, Hamrick JL, Bhalala U, Armstrong JS, Lee JH, Kulikowicz E, Lee JK, Kudchadkar SR, Koehler RC, Hunt EA, Shaffner DH. Pediatr Crit Care Med; 2017 Nov; 18(11):e575-e584. PubMed ID: 28817508 [Abstract] [Full Text] [Related]
4. Cold aortic flush and chest compressions enable good neurologic outcome after 15 mins of ventricular fibrillation in cardiac arrest in pigs. Janata A, Weihs W, Schratter A, Bayegan K, Holzer M, Frossard M, Sipos W, Springler G, Schmidt P, Sterz F, Losert UM, Laggner AN, Kochanek PM, Behringer W. Crit Care Med; 2010 Aug; 38(8):1637-43. PubMed ID: 20543671 [Abstract] [Full Text] [Related]
7. The Effect of Chest Compression Location and Occlusion of the Aorta in a Traumatic Arrest Model. Anderson KL, Morgan JD, Castaneda MG, Boudreau SM, Araña AA, Kohn MA, Bebarta VS. J Surg Res; 2020 Oct; 254():64-74. PubMed ID: 32417498 [Abstract] [Full Text] [Related]
9. Minimally invasive direct cardiac massage versus closed-chest cardiopulmonary resuscitation in a porcine model of prolonged ventricular fibrillation cardiac arrest. Paiva EF, Kern KB, Hilwig RW, Scalabrini A, Ewy GA. Resuscitation; 2000 Nov; 47(3):287-99. PubMed ID: 11114459 [Abstract] [Full Text] [Related]
10. Association between chest compression rates and clinical outcomes following in-hospital cardiac arrest at an academic tertiary hospital. Kilgannon JH, Kirchhoff M, Pierce L, Aunchman N, Trzeciak S, Roberts BW. Resuscitation; 2017 Jan; 110():154-161. PubMed ID: 27666168 [Abstract] [Full Text] [Related]
14. Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest. Aggelina A, Pantazopoulos I, Giokas G, Chalkias A, Mavrovounis G, Papalois A, Douvanas A, Xanthos T, Iacovidou N. Am J Emerg Med; 2021 Oct; 48():60-66. PubMed ID: 33839633 [Abstract] [Full Text] [Related]
15. Bystander fatigue and CPR quality by older bystanders: a randomized crossover trial comparing continuous chest compressions and 30:2 compressions to ventilations. Liu S, Vaillancourt C, Kasaboski A, Taljaard M. CJEM; 2016 Nov; 18(6):461-468. PubMed ID: 27650514 [Abstract] [Full Text] [Related]
16. Left ventricular compressions improve return of spontaneous circulation and hemodynamics in a swine model of traumatic cardiopulmonary arrest. Anderson KL, Fiala KC, Castaneda MG, Boudreau SM, Araña AA, Bebarta VS. J Trauma Acute Care Surg; 2018 Aug; 85(2):303-310. PubMed ID: 29613954 [Abstract] [Full Text] [Related]
17. Mechanical versus manual chest compressions for cardiac arrest. Brooks SC, Hassan N, Bigham BL, Morrison LJ. Cochrane Database Syst Rev; 2014 Feb 27; (2):CD007260. PubMed ID: 24574099 [Abstract] [Full Text] [Related]
18. A comparison of Selective Aortic Arch Perfusion and Resuscitative Endovascular Balloon Occlusion of the Aorta for the management of hemorrhage-induced traumatic cardiac arrest: A translational model in large swine. Barnard EBG, Manning JE, Smith JE, Rall JM, Cox JM, Ross JD. PLoS Med; 2017 Jul 27; 14(7):e1002349. PubMed ID: 28742797 [Abstract] [Full Text] [Related]