These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
268 related items for PubMed ID: 31079453
1. Aptamer Structure Switch Fluorescence Anisotropy Assay for Small Molecules Using Streptavidin as an Effective Signal Amplifier Based on Proximity Effect. Li Y, Zhao Q. Anal Chem; 2019 Jun 04; 91(11):7379-7384. PubMed ID: 31079453 [Abstract] [Full Text] [Related]
2. Fluorescence Anisotropy-Based Signal-Off and Signal-On Aptamer Assays Using Lissamine Rhodamine B as a Label for Ochratoxin A. Li Y, Zhang N, Wang H, Zhao Q. J Agric Food Chem; 2020 Apr 08; 68(14):4277-4283. PubMed ID: 32182058 [Abstract] [Full Text] [Related]
3. Aptamer-Structure Switch Coupled with Horseradish Peroxidase Labeling on a Microplate for the Sensitive Detection of Small Molecules. Li Y, Sun L, Zhao Q. Anal Chem; 2019 Feb 19; 91(4):2615-2619. PubMed ID: 30675773 [Abstract] [Full Text] [Related]
4. Development of aptamer fluorescent switch assay for aflatoxin B1 by using fluorescein-labeled aptamer and black hole quencher 1-labeled complementary DNA. Li Y, Sun L, Zhao Q. Anal Bioanal Chem; 2018 Sep 19; 410(24):6269-6277. PubMed ID: 29998366 [Abstract] [Full Text] [Related]
5. Identification of allosteric nucleotide sites of tetramethylrhodamine-labeled aptamer for noncompetitive aptamer-based fluorescence anisotropy detection of a small molecule, ochratoxin A. Zhao Q, Lv Q, Wang H. Anal Chem; 2014 Jan 21; 86(2):1238-45. PubMed ID: 24354298 [Abstract] [Full Text] [Related]
6. Aptamer fluorescence anisotropy assays for detection of aflatoxin B1 and adenosine triphosphate using antibody to amplify signal change. Li Y, Yu H, Zhao Q. RSC Adv; 2022 Mar 01; 12(12):7464-7468. PubMed ID: 35424710 [Abstract] [Full Text] [Related]
7. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples. Cui L, Zou Y, Lin N, Zhu Z, Jenkins G, Yang CJ. Anal Chem; 2012 Jul 03; 84(13):5535-41. PubMed ID: 22686244 [Abstract] [Full Text] [Related]
8. Competitive fluorescence anisotropy/polarization assay for ATP using aptamer as affinity ligand and dye-labeled ATP as fluorescence tracer. Li Y, Sun L, Zhao Q. Talanta; 2017 Nov 01; 174():7-13. PubMed ID: 28738645 [Abstract] [Full Text] [Related]
9. Enzymatic cleavage and mass amplification strategy for small molecule detection using aptamer-based fluorescence polarization biosensor. Kang L, Yang B, Zhang X, Cui L, Meng H, Mei L, Wu C, Ren S, Tan W. Anal Chim Acta; 2015 Jun 16; 879():91-6. PubMed ID: 26002482 [Abstract] [Full Text] [Related]
10. Antibody- and aptamer-based competitive fluorescence polarization/anisotropy assays for ochratoxin A with tetramethylrhodamine-labeled ochratoxin A. Li Y, Zhao Q. Anal Methods; 2021 Apr 07; 13(13):1612-1617. PubMed ID: 33734257 [Abstract] [Full Text] [Related]
11. GO-amplified fluorescence polarization assay for high-sensitivity detection of aflatoxin B1 with low dosage aptamer probe. Ye H, Lu Q, Duan N, Wang Z. Anal Bioanal Chem; 2019 Feb 07; 411(5):1107-1115. PubMed ID: 30612175 [Abstract] [Full Text] [Related]
12. A Simple Structure-Switch Aptasensor Using Label-Free Aptamer for Fluorescence Detection of Aflatoxin B1. Wang C, Yu H, Zhao Q. Molecules; 2022 Jul 01; 27(13):. PubMed ID: 35807501 [Abstract] [Full Text] [Related]
13. Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Cruz-Aguado JA, Penner G. Anal Chem; 2008 Nov 15; 80(22):8853-5. PubMed ID: 18947191 [Abstract] [Full Text] [Related]
14. Dual-signal output fluorescent aptasensor based on DNA programmability and gold nanoflowers for multiple mycotoxins detection. Qiao M, Liu Y, Wei M. Anal Bioanal Chem; 2023 Jan 15; 415(2):277-288. PubMed ID: 36376716 [Abstract] [Full Text] [Related]
15. Directing a rational design of aptamer-based fluorescence anisotropy assay for sensitive detection of immunoglobulin E by site-specific binding study. Zhao Q, Bai Y, Wang H. Talanta; 2020 Sep 01; 217():121018. PubMed ID: 32498825 [Abstract] [Full Text] [Related]
16. An aptamer assay for aflatoxin B1 detection using Mg2+ mediated free zone capillary electrophoresis coupled with laser induced fluorescence. Sun L, Li Y, Wang H, Zhao Q. Talanta; 2019 Nov 01; 204():182-188. PubMed ID: 31357280 [Abstract] [Full Text] [Related]
17. Direct fluorescence anisotropy approach for aflatoxin B1 detection and affinity binding study by using single tetramethylrhodamine labeled aptamer. Sun L, Zhao Q. Talanta; 2018 Nov 01; 189():442-450. PubMed ID: 30086944 [Abstract] [Full Text] [Related]
18. Systematic truncating of aptamers to create high-performance graphene oxide (GO)-based aptasensors for the multiplex detection of mycotoxins. Wang X, Gao X, He J, Hu X, Li Y, Li X, Fan L, Yu HZ. Analyst; 2019 Jun 21; 144(12):3826-3835. PubMed ID: 31090762 [Abstract] [Full Text] [Related]
19. Aptamer fluorescence anisotropy sensors for adenosine triphosphate by comprehensive screening tetramethylrhodamine labeled nucleotides. Zhao Q, Lv Q, Wang H. Biosens Bioelectron; 2015 Aug 15; 70():188-93. PubMed ID: 25814408 [Abstract] [Full Text] [Related]
20. Fluorometric determination of aflatoxin B1 using a labeled aptamer and gold nanoparticles modified with a complementary sequence acting as a quencher. Wang C, Li Y, Zhou C, Zhao Q. Mikrochim Acta; 2019 Oct 27; 186(11):728. PubMed ID: 31656974 [Abstract] [Full Text] [Related] Page: [Next] [New Search]