These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 31088671
1. Highly efficient treatment of textile dyeing sludge by CO2 thermal plasma gasification. Wang M, Mao M, Zhang M, Wen G, Yang Q, Su B, Ren Q. Waste Manag; 2019 May 01; 90():29-36. PubMed ID: 31088671 [Abstract] [Full Text] [Related]
2. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants. Liang X, Ning XA, Chen G, Lin M, Liu J, Wang Y. Ecotoxicol Environ Saf; 2013 Dec 01; 98():128-34. PubMed ID: 24094414 [Abstract] [Full Text] [Related]
3. The agricultural use potential of the detoxified textile dyeing sludge by integrated Ultrasound/Fenton-like process: A comparative study. Zou H, Ning XA, Wang Y, Zhou F. Ecotoxicol Environ Saf; 2019 May 15; 172():26-32. PubMed ID: 30669071 [Abstract] [Full Text] [Related]
4. Chlorophenols in textile dyeing sludge: Pollution characteristics and environmental risk control. Chen X, Ning XA, Lai X, Wang Y, Zhang Y, He Y. J Hazard Mater; 2021 Aug 15; 416():125721. PubMed ID: 34492775 [Abstract] [Full Text] [Related]
5. CO2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: Dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms. Song Y, Hu J, Liu J, Evrendilek F, Buyukada M. J Hazard Mater; 2020 Dec 05; 400():123190. PubMed ID: 32947737 [Abstract] [Full Text] [Related]
6. Upflow anaerobic sludge blanket reactor--a review. Bal AS, Dhagat NN. Indian J Environ Health; 2001 Apr 05; 43(2):1-82. PubMed ID: 12397675 [Abstract] [Full Text] [Related]
7. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge. Peng X, Ma X, Xu Z. Bioresour Technol; 2015 Mar 05; 180():288-95. PubMed ID: 25618498 [Abstract] [Full Text] [Related]
8. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Wang X, Li C, Li Z, Yu G, Wang Y. Ecotoxicol Environ Saf; 2019 Jan 30; 168():45-52. PubMed ID: 30384166 [Abstract] [Full Text] [Related]
9. Textile dyeing industry: environmental impacts and remediation. Khattab TA, Abdelrahman MS, Rehan M. Environ Sci Pollut Res Int; 2020 Feb 30; 27(4):3803-3818. PubMed ID: 31838699 [Abstract] [Full Text] [Related]
10. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents. Agon N, Hrabovský M, Chumak O, Hlína M, Kopecký V, Masláni A, Bosmans A, Helsen L, Skoblja S, Van Oost G, Vierendeels J. Waste Manag; 2016 Jan 30; 47(Pt B):246-55. PubMed ID: 26210232 [Abstract] [Full Text] [Related]
11. Products distribution and sulfur fixation during the pyrolysis of CaO conditioned textile dyeing sludge: Effects of pyrolysis temperature and heating rate. Cao C, Cheng Y, Hu H, Wang H, Liu S, Hu M, Li X, Yao H. Waste Manag; 2022 Nov 30; 153():367-375. PubMed ID: 36191497 [Abstract] [Full Text] [Related]
12. Characteristics of the microwave pyrolysis and microwave CO2-assisted gasification of dewatered sewage sludge. Chun YN, Jeong BR. Environ Technol; 2018 Oct 30; 39(19):2484-2494. PubMed ID: 28726561 [Abstract] [Full Text] [Related]
13. Lightweight bricks manufactured from ground soil, textile sludge, and coal ash. Chen C, Wu H. Environ Technol; 2018 Jun 30; 39(11):1359-1367. PubMed ID: 28488931 [Abstract] [Full Text] [Related]
14. Supercritical fluid technology as a sustainable alternative method for textile dyeing: An approach on waste, energy, and CO2 emission reduction. de Oliveira CRS, de Oliveira PV, Pellenz L, de Aguiar CRL, da Silva Júnior AH. J Environ Sci (China); 2024 Jun 30; 140():123-145. PubMed ID: 38331495 [Abstract] [Full Text] [Related]
15. Thermo-chemical process with sewage sludge by using CO2. Kwon EE, Yi H, Kwon HH. J Environ Manage; 2013 Oct 15; 128():435-40. PubMed ID: 23792821 [Abstract] [Full Text] [Related]
16. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier. Werle S. Waste Manag Res; 2014 Oct 15; 32(10):954-60. PubMed ID: 24938298 [Abstract] [Full Text] [Related]
17. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction. Gorazda K, Tarko B, Werle S, Wzorek Z. Waste Manag; 2018 Mar 15; 73():404-415. PubMed ID: 29097126 [Abstract] [Full Text] [Related]
18. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics. Xie W, Wen S, Liu J, Xie W, Kuo J, Lu X, Sun S, Chang K, Buyukada M, Evrendilek F. Bioresour Technol; 2018 May 15; 255():88-95. PubMed ID: 29414178 [Abstract] [Full Text] [Related]
19. Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants. Ning XA, Lin MQ, Shen LZ, Zhang JH, Wang JY, Wang YJ, Yang ZY, Liu JY. Environ Res; 2014 Jul 15; 132():112-8. PubMed ID: 24769559 [Abstract] [Full Text] [Related]
20. Energetic, bio-oil, biochar, and ash performances of co-pyrolysis-gasification of textile dyeing sludge and Chinese medicine residues in response to K2CO3, atmosphere type, blend ratio, and temperature. Zhang G, Chen Z, Chen T, Jiang S, Evrendilek F, Huang S, Tang X, Ding Z, He Y, Xie W, Liu J. J Environ Sci (China); 2024 Feb 15; 136():133-150. PubMed ID: 37923425 [Abstract] [Full Text] [Related] Page: [Next] [New Search]