These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 31091638

  • 1. Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay.
    Shaheen SM, Wang J, Swertz AC, Feng X, Bolan N, Rinklebe J.
    Environ Pollut; 2019 May; 248():1059-1066. PubMed ID: 31091638
    [Abstract] [Full Text] [Related]

  • 2. Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil.
    Kroulíková S, Mohnke S, Wenzel WW, Tejnecký V, Száková J, Mercl F, Tlustoš P.
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20866-20878. PubMed ID: 31111391
    [Abstract] [Full Text] [Related]

  • 3. Chemical speciation and health risk assessment of potentially toxic elements in playground soil of bell metal commercial town of Eastern India.
    Laha T, Gupta N, Pal M, Koley A, Masto RE, Hoque RR, Balachandran S.
    Environ Geochem Health; 2024 Sep 25; 46(11):453. PubMed ID: 39320529
    [Abstract] [Full Text] [Related]

  • 4. Enhancing the effectiveness of zinc, cadmium, and lead phytoextraction in polluted soils by using amendments and microorganisms.
    Mishra R, Datta SP, Annapurna K, Meena MC, Dwivedi BS, Golui D, Bandyopadhyay K.
    Environ Sci Pollut Res Int; 2019 Jun 25; 26(17):17224-17235. PubMed ID: 31012068
    [Abstract] [Full Text] [Related]

  • 5. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil.
    Shaheen SM, Shams MS, Khalifa MR, El-Dali MA, Rinklebe J.
    Ecotoxicol Environ Saf; 2017 Aug 25; 142():375-387. PubMed ID: 28441624
    [Abstract] [Full Text] [Related]

  • 6. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.
    Salati S, Quadri G, Tambone F, Adani F.
    Environ Pollut; 2010 May 25; 158(5):1899-906. PubMed ID: 19932537
    [Abstract] [Full Text] [Related]

  • 7. Speciation, phytoavailability, and accumulation of toxic elements and sulfur by humic acid-fertilized lemongrass and common sage in a sandy soil treated with heavy oil fly ash: A trial for management of power stations wastes.
    Al-Solaimani SG, Al-Qureshi A, Hindi SS, Ibrahim OH, Mousa MAA, Cho YL, Hassan NEE, Liu YT, Wang SL, Antoniadis V, Rinklebe J, Shaheen SM.
    Sci Total Environ; 2024 Oct 01; 945():173998. PubMed ID: 38901575
    [Abstract] [Full Text] [Related]

  • 8. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.
    Shaheen SM, Rinklebe J.
    Environ Geochem Health; 2015 Dec 01; 37(6):953-67. PubMed ID: 26040974
    [Abstract] [Full Text] [Related]

  • 9. Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia.
    Fitamo D, Itana F, Olsson M.
    Environ Manage; 2007 Feb 01; 39(2):178-93. PubMed ID: 17160509
    [Abstract] [Full Text] [Related]

  • 10. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.
    Li Y, Li HG, Liu FC.
    Environ Monit Assess; 2017 Jan 01; 189(1):34. PubMed ID: 28013473
    [Abstract] [Full Text] [Related]

  • 11. Alkaline humic acid fertilizer alters the distribution, availability, and translocation of cadmium and zinc in the acidic soil-Sauropus androgynus system.
    Fan Q, Jiu Y, Zou D, Feng J, Zhao M, Zhang Q, Lv D, Song J, Xu Z, Ye H.
    Ecotoxicol Environ Saf; 2023 Dec 01; 268():115698. PubMed ID: 37976927
    [Abstract] [Full Text] [Related]

  • 12. Ecotoxicological monitoring of potentially toxic elements contamination in Eucalyptus forest plantation subjected to long-term irrigation with recycled wastewater.
    Mosa A, Hawamdeh OA, Rady M, Taha AA.
    Environ Pollut; 2023 Jul 15; 329():121739. PubMed ID: 37121299
    [Abstract] [Full Text] [Related]

  • 13. Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil.
    Wang J, Shaheen SM, Swertz AC, Rennert T, Feng X, Rinklebe J.
    J Hazard Mater; 2019 Jun 05; 371():687-693. PubMed ID: 30889465
    [Abstract] [Full Text] [Related]

  • 14. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J, Gonzales MJ, Ponce O, Ramírez L, León V, Torres A, Corpus M, Loayza-Muro R.
    Environ Sci Pollut Res Int; 2018 Dec 05; 25(34):33957-33966. PubMed ID: 30280335
    [Abstract] [Full Text] [Related]

  • 15. Levels and speciation of heavy metals in soils of industrial Southern Nigeria.
    Olajire AA, Ayodele ET, Oyedirdan GO, Oluyemi EA.
    Environ Monit Assess; 2003 Jun 05; 85(2):135-55. PubMed ID: 12828349
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Geochemical fractions and risk assessment of trace elements in soils around Jiaojia gold mine in Shandong Province, China.
    Cao F, Kong L, Yang L, Zhang W.
    Environ Sci Pollut Res Int; 2015 Sep 05; 22(17):13496-505. PubMed ID: 25940495
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.