These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 31092601
1. Fungiculture in Termites Is Associated with a Mycolytic Gut Bacterial Community. Hu H, da Costa RR, Pilgaard B, Schiøtt M, Lange L, Poulsen M. mSphere; 2019 May 15; 4(3):. PubMed ID: 31092601 [Abstract] [Full Text] [Related]
2. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- and soil-feeding higher termites. Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefèvre C, Halder R, Wilmes P, Gawron P, Roisin Y, Delfosse P, Calusinska M. Microbiome; 2020 Jun 23; 8(1):96. PubMed ID: 32576253 [Abstract] [Full Text] [Related]
3. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A. Mol Ecol; 2015 Oct 23; 24(20):5284-95. PubMed ID: 26348261 [Abstract] [Full Text] [Related]
4. Identifying the core microbial community in the gut of fungus-growing termites. Otani S, Mikaelyan A, Nobre T, Hansen LH, Koné NA, Sørensen SJ, Aanen DK, Boomsma JJ, Brune A, Poulsen M. Mol Ecol; 2014 Sep 23; 23(18):4631-44. PubMed ID: 25066007 [Abstract] [Full Text] [Related]
5. Comparative Gut Microbiomes of Four Species Representing the Higher and the Lower Termites. Su L, Yang L, Huang S, Su X, Li Y, Wang F, Wang E, Kang N, Xu J, Song A. J Insect Sci; 2016 Sep 23; 16(1):. PubMed ID: 27638955 [Abstract] [Full Text] [Related]
6. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites. Richards C, Otani S, Mikaelyan A, Poulsen M. PLoS One; 2017 Sep 23; 12(10):e0185745. PubMed ID: 28973021 [Abstract] [Full Text] [Related]
7. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Otani S, Hansen LH, Sørensen SJ, Poulsen M. Microb Ecol; 2016 Jan 23; 71(1):207-20. PubMed ID: 26518432 [Abstract] [Full Text] [Related]
8. Comparative Genomics Reveals Prophylactic and Catabolic Capabilities of Actinobacteria within the Fungus-Farming Termite Symbiosis. Murphy R, Benndorf R, de Beer ZW, Vollmers J, Kaster AK, Beemelmanns C, Poulsen M. mSphere; 2021 Mar 03; 6(2):. PubMed ID: 33658277 [Abstract] [Full Text] [Related]
9. The functional evolution of termite gut microbiota. Arora J, Kinjo Y, Šobotník J, Buček A, Clitheroe C, Stiblik P, Roisin Y, Žifčáková L, Park YC, Kim KY, Sillam-Dussès D, Hervé V, Lo N, Tokuda G, Brune A, Bourguignon T. Microbiome; 2022 May 27; 10(1):78. PubMed ID: 35624491 [Abstract] [Full Text] [Related]
10. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Romero Victorica M, Soria MA, Batista-García RA, Ceja-Navarro JA, Vikram S, Ortiz M, Ontañon O, Ghio S, Martínez-Ávila L, Quintero García OJ, Etcheverry C, Campos E, Cowan D, Arneodo J, Talia PM. Sci Rep; 2020 Mar 02; 10(1):3864. PubMed ID: 32123275 [Abstract] [Full Text] [Related]
11. Evidence for cascades of perturbation and adaptation in the metabolic genes of higher termite gut symbionts. Zhang X, Leadbetter JR. mBio; 2012 Mar 02; 3(4):. PubMed ID: 22911968 [Abstract] [Full Text] [Related]
12. Impact of Wood Age on Termite Microbial Assemblages. Chakraborty A, Šobotník J, Votýpková K, Hradecký J, Stiblik P, Synek J, Bourguignon T, Baldrian P, Engel MS, Novotný V, Odriozola I, Větrovský T. Appl Environ Microbiol; 2023 May 31; 89(5):e0036123. PubMed ID: 37067424 [Abstract] [Full Text] [Related]
13. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T. Mol Ecol; 2006 Feb 31; 15(2):505-16. PubMed ID: 16448416 [Abstract] [Full Text] [Related]
14. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH, Kyrpides NC, Warnecke F, Tringe SG, Hugenholtz P. PLoS One; 2013 Feb 31; 8(4):e61126. PubMed ID: 23593407 [Abstract] [Full Text] [Related]
15. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A. Proc Natl Acad Sci U S A; 2018 Dec 18; 115(51):E11996-E12004. PubMed ID: 30504145 [Abstract] [Full Text] [Related]
16. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Huang XF, Bakker MG, Judd TM, Reardon KF, Vivanco JM. Microb Ecol; 2013 Apr 18; 65(3):531-6. PubMed ID: 23529653 [Abstract] [Full Text] [Related]
17. Patterns of [FeFe] hydrogenase diversity in the gut microbial communities of lignocellulose-feeding higher termites. Ballor NR, Leadbetter JR. Appl Environ Microbiol; 2012 Aug 18; 78(15):5368-74. PubMed ID: 22636002 [Abstract] [Full Text] [Related]
18. Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota. Poulsen M. Environ Microbiol; 2015 Aug 18; 17(8):2562-72. PubMed ID: 25581852 [Abstract] [Full Text] [Related]
19. Challenges and physiological implications of wood feeding in termites. Scharf ME. Curr Opin Insect Sci; 2020 Oct 18; 41():79-85. PubMed ID: 32823202 [Abstract] [Full Text] [Related]
20. Analysis of extensive [FeFe] hydrogenase gene diversity within the gut microbiota of insects representing five families of Dictyoptera. Ballor NR, Leadbetter JR. Microb Ecol; 2012 Apr 18; 63(3):586-95. PubMed ID: 21935609 [Abstract] [Full Text] [Related] Page: [Next] [New Search]