These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
287 related items for PubMed ID: 31093789
1. A Hybridized ELM for Automatic Micro Calcification Detection in Mammogram Images Based on Multi-Scale Features. Melekoodappattu JG, Subbian PS. J Med Syst; 2019 May 15; 43(7):183. PubMed ID: 31093789 [Abstract] [Full Text] [Related]
2. Computer aided detection system for micro calcifications in digital mammograms. Mohamed H, Mabrouk MS, Sharawy A. Comput Methods Programs Biomed; 2014 Oct 15; 116(3):226-35. PubMed ID: 24909786 [Abstract] [Full Text] [Related]
3. Deep feature-based automatic classification of mammograms. Arora R, Rai PK, Raman B. Med Biol Eng Comput; 2020 Jun 15; 58(6):1199-1211. PubMed ID: 32200453 [Abstract] [Full Text] [Related]
4. Quantitative comparison of clustered microcalcifications in for-presentation and for-processing mammograms in full-field digital mammography. Wang J, Nishikawa RM, Yang Y. Med Phys; 2017 Jul 15; 44(7):3726-3738. PubMed ID: 28477395 [Abstract] [Full Text] [Related]
5. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines. Li F, Zhao C, Xia Z, Wang Y, Zhou X, Li GZ. BMC Complement Altern Med; 2012 Aug 16; 12():127. PubMed ID: 22898352 [Abstract] [Full Text] [Related]
6. Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model. Wang J, Nishikawa RM, Yang Y. Med Phys; 2016 Jan 16; 43(1):159. PubMed ID: 26745908 [Abstract] [Full Text] [Related]
7. Automatic detection of abnormalities in mammograms. Suhail Z, Sarwar M, Murtaza K. BMC Med Imaging; 2015 Nov 06; 15():53. PubMed ID: 26545584 [Abstract] [Full Text] [Related]
8. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class. Wang Z, Xin J, Sun P, Lin Z, Yao Y, Gao X. Comput Methods Programs Biomed; 2018 Aug 06; 162():197-209. PubMed ID: 29903487 [Abstract] [Full Text] [Related]
9. Decision support system for breast cancer detection using mammograms. Ganesan K, Acharya RU, Chua CK, Min LC, Mathew B, Thomas AK. Proc Inst Mech Eng H; 2013 Jul 06; 227(7):721-32. PubMed ID: 23636749 [Abstract] [Full Text] [Related]
10. Computer-aided diagnosis of breast microcalcifications based on dual-tree complex wavelet transform. Jian W, Sun X, Luo S. Biomed Eng Online; 2012 Dec 19; 11():96. PubMed ID: 23253202 [Abstract] [Full Text] [Related]
11. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography. Zyout I, Czajkowska J, Grzegorzek M. Comput Med Imaging Graph; 2015 Dec 19; 46 Pt 2():95-107. PubMed ID: 25795630 [Abstract] [Full Text] [Related]
15. A comparison of methods for three-class mammograms classification. Milosevic M, Jovanovic Z, Jankovic D. Technol Health Care; 2017 Aug 09; 25(4):657-670. PubMed ID: 28436405 [Abstract] [Full Text] [Related]
18. Framework of Computer Aided Diagnosis Systems for Cancer Classification Based on Medical Images. El Houby EMF. J Med Syst; 2018 Jul 11; 42(8):157. PubMed ID: 29995204 [Abstract] [Full Text] [Related]
20. A novel approach for detection and classification of mammographic microcalcifications using wavelet analysis and extreme learning machine. Malar E, Kandaswamy A, Chakravarthy D, Giri Dharan A. Comput Biol Med; 2012 Sep 11; 42(9):898-905. PubMed ID: 22871899 [Abstract] [Full Text] [Related] Page: [Next] [New Search]