These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


362 related items for PubMed ID: 31101625

  • 1. Identification and transcriptome analysis of erythroblastic island macrophages.
    Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S, Guo X, Huang Y, Zhang S, Han Y, Wu X, Rice CM, Huang G, Gallagher PG, Mendelson A, Yazdanbakhsh K, Liu J, Chen L, An X.
    Blood; 2019 Aug 01; 134(5):480-491. PubMed ID: 31101625
    [Abstract] [Full Text] [Related]

  • 2. Erythroblast island macrophages: recent discovery and future perspectives.
    Li W, Wang Y, Chen L, An X.
    Blood Sci; 2019 Aug 01; 1(1):61-64. PubMed ID: 35402789
    [Abstract] [Full Text] [Related]

  • 3. Erythroblastic Island Macrophages Shape Normal Erythropoiesis and Drive Associated Disorders in Erythroid Hematopoietic Diseases.
    Li W, Guo R, Song Y, Jiang Z.
    Front Cell Dev Biol; 2020 Aug 01; 8():613885. PubMed ID: 33644032
    [Abstract] [Full Text] [Related]

  • 4. EpoR-tdTomato-Cre mice enable identification of EpoR expression in subsets of tissue macrophages and hematopoietic cells.
    Zhang H, Wang S, Liu D, Gao C, Han Y, Guo X, Qu X, Li W, Zhang S, Geng J, Zhang L, Mendelson A, Yazdanbakhsh K, Chen L, An X.
    Blood; 2021 Nov 18; 138(20):1986-1997. PubMed ID: 34098576
    [Abstract] [Full Text] [Related]

  • 5. Expansion of EPOR-negative macrophages besides erythroblasts by elevated EPOR signaling in erythrocytosis mouse models.
    Wang J, Hayashi Y, Yokota A, Xu Z, Zhang Y, Huang R, Yan X, Liu H, Ma L, Azam M, Bridges JP, Cancelas JA, Kalfa TA, An X, Xiao Z, Huang G.
    Haematologica; 2018 Jan 18; 103(1):40-50. PubMed ID: 29051279
    [Abstract] [Full Text] [Related]

  • 6. Impact of Erythropoietin Production by Erythroblastic Island Macrophages on Homeostatic Murine Erythropoiesis.
    Perron-Deshaies G, St-Louis P, Romero H, Scorza T.
    Int J Mol Sci; 2020 Nov 25; 21(23):. PubMed ID: 33255601
    [Abstract] [Full Text] [Related]

  • 7. Unraveling Macrophage Heterogeneity in Erythroblastic Islands.
    Seu KG, Papoin J, Fessler R, Hom J, Huang G, Mohandas N, Blanc L, Kalfa TA.
    Front Immunol; 2017 Nov 25; 8():1140. PubMed ID: 28979259
    [Abstract] [Full Text] [Related]

  • 8. GM-CSF impairs erythropoiesis by disrupting erythroblastic island formation via macrophages.
    Cao W, Fan W, Wang F, Zhang Y, Wu G, Shi X, Shi JX, Gao F, Yan M, Guo R, Li Y, Li W, Du C, Jiang Z.
    J Transl Med; 2022 Jan 03; 20(1):11. PubMed ID: 34980171
    [Abstract] [Full Text] [Related]

  • 9. Erythroblastic islands foster granulopoiesis in parallel to terminal erythropoiesis.
    Romano L, Seu KG, Papoin J, Muench DE, Konstantinidis D, Olsson A, Schlum K, Chetal K, Chasis JA, Mohandas N, Barnes BJ, Zheng Y, Grimes HL, Salomonis N, Blanc L, Kalfa TA.
    Blood; 2022 Oct 06; 140(14):1621-1634. PubMed ID: 35862735
    [Abstract] [Full Text] [Related]

  • 10. Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.
    Singh S, Dev A, Verma R, Pradeep A, Sathyanarayana P, Green JM, Narayanan A, Wojchowski DM.
    PLoS One; 2012 Oct 06; 7(7):e38530. PubMed ID: 22808010
    [Abstract] [Full Text] [Related]

  • 11. CD169-CD43 interaction is involved in erythroblastic island formation and erythroid differentiation.
    Bai J, Fan F, Gao C, Li S, Li W, Wei T, Cheng S, Yu J, Zheng C, Zhao J, Zou L, Feng L, Yi J, Qin H.
    Haematologica; 2023 Aug 01; 108(8):2205-2217. PubMed ID: 36861412
    [Abstract] [Full Text] [Related]

  • 12. Analyzing the Formation, Morphology, and Integrity of Erythroblastic Islands.
    Yeo JH, Cosgriff MP, Fraser ST.
    Methods Mol Biol; 2018 Aug 01; 1698():133-152. PubMed ID: 29076088
    [Abstract] [Full Text] [Related]

  • 13. Hemolysis-driven IFNα production impairs erythropoiesis by negatively regulating EPO signaling in sickle cell disease.
    Han Y, Gao C, Liu Y, Zhang H, Wang S, Zhao H, Bao W, Guo X, Vinchi F, Lobo C, Shi P, Mendelson A, Luchsinger L, Zhong H, Yazdanbakhsh K, An X.
    Blood; 2024 Mar 14; 143(11):1018-1031. PubMed ID: 38127913
    [Abstract] [Full Text] [Related]

  • 14. Delayed hemoglobin switching and perinatal neocytolysis in mice with gain-of-function erythropoietin receptor.
    Divoky V, Song J, Horvathova M, Kralova B, Votavova H, Prchal JT, Yoon D.
    J Mol Med (Berl); 2016 May 14; 94(5):597-608. PubMed ID: 26706855
    [Abstract] [Full Text] [Related]

  • 15. Crosstalk between terminal erythropoiesis and granulopoiesis within their common niche: the erythromyeloblastic island.
    Romano L, Seu KG, Blanc L, Kalfa TA.
    Curr Opin Hematol; 2023 Jul 01; 30(4):99-105. PubMed ID: 37254853
    [Abstract] [Full Text] [Related]

  • 16. Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands.
    Wei Q, Boulais PE, Zhang D, Pinho S, Tanaka M, Frenette PS.
    Blood; 2019 Mar 14; 133(11):1222-1232. PubMed ID: 30674470
    [Abstract] [Full Text] [Related]

  • 17. Imaging flow cytometry reveals that granulocyte colony-stimulating factor treatment causes loss of erythroblastic islands in the mouse bone marrow.
    Tay J, Bisht K, McGirr C, Millard SM, Pettit AR, Winkler IG, Levesque JP.
    Exp Hematol; 2020 Feb 14; 82():33-42. PubMed ID: 32045657
    [Abstract] [Full Text] [Related]

  • 18. Mitochondria transfer mediates stress erythropoiesis by altering the bioenergetic profiles of early erythroblasts through CD47.
    Yang C, Yokomori R, Chua LH, Tan SH, Tan DQ, Miharada K, Sanda T, Suda T.
    J Exp Med; 2022 Dec 05; 219(12):. PubMed ID: 36112140
    [Abstract] [Full Text] [Related]

  • 19. Mitochondria transfer from early stages of erythroblasts to their macrophage niche via tunnelling nanotubes.
    Yang C, Endoh M, Tan DQ, Nakamura-Ishizu A, Takihara Y, Matsumura T, Suda T.
    Br J Haematol; 2021 Jun 05; 193(6):1260-1274. PubMed ID: 34036571
    [Abstract] [Full Text] [Related]

  • 20. Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis.
    Menon MP, Karur V, Bogacheva O, Bogachev O, Cuetara B, Wojchowski DM.
    J Clin Invest; 2006 Mar 05; 116(3):683-94. PubMed ID: 16511603
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.