These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Network analyses predict major regulators of resistance to early blight disease complex in tomato. Tominello-Ramirez CS, Muñoz Hoyos L, Oubounyt M, Stam R. BMC Plant Biol; 2024 Jul 06; 24(1):641. PubMed ID: 38971719 [Abstract] [Full Text] [Related]
23. Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid. Wang Y, Tao X, Tang XM, Xiao L, Sun JL, Yan XF, Li D, Deng HY, Ma XR. BMC Genomics; 2013 Dec 01; 14(1):841. PubMed ID: 24289302 [Abstract] [Full Text] [Related]
24. Molecular Insights into the Role of Cysteine-Rich Peptides in Induced Resistance to Fusarium oxysporum Infection in Tomato Based on Transcriptome Profiling. Slezina MP, Istomina EA, Korostyleva TV, Kovtun AS, Kasianov AS, Konopkin AA, Shcherbakova LA, Odintsova TI. Int J Mol Sci; 2021 May 27; 22(11):. PubMed ID: 34072144 [Abstract] [Full Text] [Related]
26. Mapping and screening of the tomato Stemphylium lycopersici resistance gene, Sm, based on bulked segregant analysis in combination with genome resequencing. Yang H, Zhao T, Jiang J, Wang S, Wang A, Li J, Xu X. BMC Plant Biol; 2017 Dec 29; 17(1):266. PubMed ID: 29284401 [Abstract] [Full Text] [Related]
29. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, Nagesh M, Singh BP. Virus Res; 2017 Mar 15; 232():22-33. PubMed ID: 28115198 [Abstract] [Full Text] [Related]
35. Comparative analysis of infected cassava root transcriptomics reveals candidate genes for root rot disease resistance. Hohenfeld CS, de Oliveira SAS, Ferreira CF, Mello VH, Margarido GRA, Passos AR, de Oliveira EJ. Sci Rep; 2024 May 08; 14(1):10587. PubMed ID: 38719851 [Abstract] [Full Text] [Related]
36. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Gonzalez-Cendales Y, Catanzariti AM, Baker B, Mcgrath DJ, Jones DA. Mol Plant Pathol; 2016 Apr 08; 17(3):448-63. PubMed ID: 26177154 [Abstract] [Full Text] [Related]
37. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Sci Rep; 2016 Jan 08; 6():19007. PubMed ID: 26743436 [Abstract] [Full Text] [Related]
38. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease. Catanzariti AM, Lim GTT, Jones DA. New Phytol; 2015 Jul 08; 207(1):106-118. PubMed ID: 25740416 [Abstract] [Full Text] [Related]
39. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. Du C, Jiang J, Zhang H, Zhao T, Yang H, Zhang D, Zhao Z, Xu X, Li J. BMC Genomics; 2020 Mar 23; 21(1):250. PubMed ID: 32293256 [Abstract] [Full Text] [Related]
40. Gene enrichment and co-expression analysis shed light on transcriptional responses to Ralstonia solanacearum in tomato. Shi J, Shui D, Su S, Xiong Z, Zai W. BMC Genomics; 2023 Mar 29; 24(1):159. PubMed ID: 36991339 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]