These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
314 related items for PubMed ID: 31105011
1. Multi-level Modulation of Light Signaling by GIGANTEA Regulates Both the Output and Pace of the Circadian Clock. Nohales MA, Liu W, Duffy T, Nozue K, Sawa M, Pruneda-Paz JL, Maloof JN, Jacobsen SE, Kay SA. Dev Cell; 2019 Jun 17; 49(6):840-851.e8. PubMed ID: 31105011 [Abstract] [Full Text] [Related]
3. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana. Yamashino T. Biosci Biotechnol Biochem; 2013 Jun 17; 77(1):10-6. PubMed ID: 23291766 [Abstract] [Full Text] [Related]
5. PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis. Shor E, Paik I, Kangisser S, Green R, Huq E. New Phytol; 2017 Jul 17; 215(1):217-228. PubMed ID: 28440582 [Abstract] [Full Text] [Related]
6. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Niwa Y, Yamashino T, Mizuno T. Plant Cell Physiol; 2009 Apr 17; 50(4):838-54. PubMed ID: 19233867 [Abstract] [Full Text] [Related]
7. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Martin-Tryon EL, Kreps JA, Harmer SL. Plant Physiol; 2007 Jan 17; 143(1):473-86. PubMed ID: 17098855 [Abstract] [Full Text] [Related]
8. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. Seaton DD, Smith RW, Song YH, MacGregor DR, Stewart K, Steel G, Foreman J, Penfield S, Imaizumi T, Millar AJ, Halliday KJ. Mol Syst Biol; 2015 Jan 19; 11(1):776. PubMed ID: 25600997 [Abstract] [Full Text] [Related]
9. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG. Science; 1999 Sep 03; 285(5433):1579-82. PubMed ID: 10477524 [Abstract] [Full Text] [Related]
10. PIFs: systems integrators in plant development. Leivar P, Monte E. Plant Cell; 2014 Jan 03; 26(1):56-78. PubMed ID: 24481072 [Abstract] [Full Text] [Related]
11. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T. Plant Cell Physiol; 2011 Aug 03; 52(8):1315-29. PubMed ID: 21666227 [Abstract] [Full Text] [Related]
12. Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters. Soy J, Leivar P, González-Schain N, Martín G, Diaz C, Sentandreu M, Al-Sady B, Quail PH, Monte E. Proc Natl Acad Sci U S A; 2016 Apr 26; 113(17):4870-5. PubMed ID: 27071129 [Abstract] [Full Text] [Related]
13. Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana. Yamashino T, Nomoto Y, Lorrain S, Miyachi M, Ito S, Nakamichi N, Fankhauser C, Mizuno T. Plant Signal Behav; 2013 Mar 26; 8(3):e23390. PubMed ID: 23299336 [Abstract] [Full Text] [Related]
14. A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, Mizuno T. Plant Cell Physiol; 2012 Nov 26; 53(11):1965-73. PubMed ID: 23037004 [Abstract] [Full Text] [Related]
15. GIGANTEA adjusts the response to shade at dusk by directly impinging on PHYTOCHROME INTERACTING FACTOR 7 function. Martínez-Vasallo C, Cole B, Pérez-Alemany J, Ortiz-Ramírez CI, Gallego-Bartolomé J, Chory J, Kay SA, Nohales MA. Proc Natl Acad Sci U S A; 2024 Jul 23; 121(30):e2315778121. PubMed ID: 39012827 [Abstract] [Full Text] [Related]
16. Photoperiod sensing of the circadian clock is controlled by EARLY FLOWERING 3 and GIGANTEA. Anwer MU, Davis A, Davis SJ, Quint M. Plant J; 2020 Mar 23; 101(6):1397-1410. PubMed ID: 31694066 [Abstract] [Full Text] [Related]
17. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J. PLoS Biol; 2008 Sep 16; 6(9):e225. PubMed ID: 18798691 [Abstract] [Full Text] [Related]
18. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. Park MJ, Kwon YJ, Gil KE, Park CM. BMC Plant Biol; 2016 May 20; 16(1):114. PubMed ID: 27207270 [Abstract] [Full Text] [Related]
19. Insight into a Physiological Role for the EC Night-Time Repressor in the Arabidopsis Circadian Clock. Mizuno T, Kitayama M, Takayama C, Yamashino T. Plant Cell Physiol; 2015 Sep 20; 56(9):1738-47. PubMed ID: 26108788 [Abstract] [Full Text] [Related]
20. Altered oscillator function affects clock resonance and is responsible for the reduced day-length sensitivity of CKB4 overexpressing plants. Portolés S, Más P. Plant J; 2007 Sep 20; 51(6):966-77. PubMed ID: 17662034 [Abstract] [Full Text] [Related] Page: [Next] [New Search]