These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
300 related items for PubMed ID: 31114011
1. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Youn H, Lee K, Her J, Jeon J, Mok J, So JI, Shin S, Ban C. Sci Rep; 2019 May 21; 9(1):7659. PubMed ID: 31114011 [Abstract] [Full Text] [Related]
2. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics. Zhang Y, Duan B, Bao Q, Yang T, Wei T, Wang J, Mao C, Zhang C, Yang M. J Mater Chem B; 2020 Sep 30; 8(37):8607-8613. PubMed ID: 32820795 [Abstract] [Full Text] [Related]
3. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q. Anal Chem; 2012 Jul 17; 84(14):6263-70. PubMed ID: 22816786 [Abstract] [Full Text] [Related]
4. A universal optical aptasensor for antibiotics determination based on a new high-efficiency Förster resonance energy transfer pair. Hu J, Chen P, Zhang L, Sun P, Huang Y, Liu X, Fan Q. Mikrochim Acta; 2024 Aug 24; 191(9):561. PubMed ID: 39180707 [Abstract] [Full Text] [Related]
8. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Ma L, Guo T, Pan S, Zhang Y. Mikrochim Acta; 2018 Oct 01; 185(10):487. PubMed ID: 30276550 [Abstract] [Full Text] [Related]
11. Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins. Gu H, Hao L, Ye H, Ma P, Wang Z. Mikrochim Acta; 2021 Mar 09; 188(4):118. PubMed ID: 33687572 [Abstract] [Full Text] [Related]
12. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y, Zhang J, Wang X, Duan Y. Biosens Bioelectron; 2015 Mar 15; 65():16-22. PubMed ID: 25461133 [Abstract] [Full Text] [Related]
13. Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface. Ueno Y, Furukawa K, Matsuo K, Inoue S, Hayashi K, Hibino H. Chem Commun (Camb); 2013 Nov 14; 49(88):10346-8. PubMed ID: 23985796 [Abstract] [Full Text] [Related]
14. A Novel Graphene Oxide-Based Aptasensor for Amplified Fluorescent Detection of Aflatoxin M1 in Milk Powder. Guo X, Wen F, Qiao Q, Zheng N, Saive M, Fauconnier ML, Wang J. Sensors (Basel); 2019 Sep 05; 19(18):. PubMed ID: 31491974 [Abstract] [Full Text] [Related]
18. A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Xiao K, Liu J, Chen H, Zhang S, Kong J. Biosens Bioelectron; 2017 May 15; 91():76-81. PubMed ID: 27992802 [Abstract] [Full Text] [Related]
19. A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk. Wang J, Lu T, Hu Y, Wang X, Wu Y. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb 05; 226():117651. PubMed ID: 31629980 [Abstract] [Full Text] [Related]
20. A Multicolor Fluorescence Nanoprobe Platform Using Two-Dimensional Metal Organic Framework Nanosheets and Double Stirring Bar Assisted Target Replacement for Multiple Bioanalytical Applications. Yang Q, Hong J, Wu YX, Cao Y, Wu D, Hu F, Gan N. ACS Appl Mater Interfaces; 2019 Nov 06; 11(44):41506-41515. PubMed ID: 31580049 [Abstract] [Full Text] [Related] Page: [Next] [New Search]