These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 31119370

  • 1. Carbon catabolite repression: not only for glucose.
    Simpson-Lavy K, Kupiec M.
    Curr Genet; 2019 Dec; 65(6):1321-1323. PubMed ID: 31119370
    [Abstract] [Full Text] [Related]

  • 2. Carbon Catabolite Repression in Yeast is Not Limited to Glucose.
    Simpson-Lavy K, Kupiec M.
    Sci Rep; 2019 Apr 24; 9(1):6491. PubMed ID: 31019232
    [Abstract] [Full Text] [Related]

  • 3. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö, Nielsen J.
    FEMS Yeast Res; 2015 Sep 24; 15(6):. PubMed ID: 26205245
    [Abstract] [Full Text] [Related]

  • 4. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.
    Moreno-García J, García-Martínez T, Millán MC, Mauricio JC, Moreno J.
    Food Microbiol; 2015 Oct 24; 51():1-9. PubMed ID: 26187821
    [Abstract] [Full Text] [Related]

  • 5. Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid.
    Balderas-Hernández VE, Correia K, Mahadevan R.
    J Ind Microbiol Biotechnol; 2018 Aug 24; 45(8):735-751. PubMed ID: 29876685
    [Abstract] [Full Text] [Related]

  • 6. Saccharomyces cerevisiae, key role of MIG1 gene in metabolic switching: putative fermentation/oxidation.
    Alipourfard I, Bakhtiyari S, Datukishvili N, Haghani K, Di Renzo L, De Miranda RC, Cioccoloni G, Basiratyan Yazdi P, Mikeladze D.
    J Biol Regul Homeost Agents; 2018 Aug 24; 32(3):649-654. PubMed ID: 29921394
    [Abstract] [Full Text] [Related]

  • 7. Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation.
    López ML, Redruello B, Valdés E, Moreno F, Heinisch JJ, Rodicio R.
    Curr Genet; 2004 Jan 24; 44(6):305-16. PubMed ID: 14569415
    [Abstract] [Full Text] [Related]

  • 8. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA, Salvadó Z, Tronchoni J, Morales P, Rodrigues AJ, Quirós M, Gonzalez R.
    Microb Cell Fact; 2016 Sep 15; 15(1):156. PubMed ID: 27627879
    [Abstract] [Full Text] [Related]

  • 9. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis.
    Zhang J, Olsson L, Nielsen J.
    Mol Microbiol; 2010 Jul 15; 77(2):371-83. PubMed ID: 20545859
    [Abstract] [Full Text] [Related]

  • 10. Magnesium ions in yeast: setting free the metabolism from glucose catabolite repression.
    Barros de Souza R, Silva RK, Ferreira DS, de Sá Leitão Paiva Junior S, de Barros Pita W, de Morais Junior MA.
    Metallomics; 2016 Nov 09; 8(11):1193-1203. PubMed ID: 27714092
    [Abstract] [Full Text] [Related]

  • 11. Nitrate boosts anaerobic ethanol production in an acetate-dependent manner in the yeast Dekkera bruxellensis.
    Peña-Moreno IC, Castro Parente D, da Silva JM, Andrade Mendonça A, Rojas LAV, de Morais Junior MA, de Barros Pita W.
    J Ind Microbiol Biotechnol; 2019 Feb 09; 46(2):209-220. PubMed ID: 30539327
    [Abstract] [Full Text] [Related]

  • 12. Overexpression of the truncated version of ILV2 enhances glycerol production in Saccharomyces cerevisiae.
    Murashchenko L, Abbas C, Dmytruk K, Sibirny A.
    Yeast; 2016 Aug 09; 33(8):463-9. PubMed ID: 26990811
    [Abstract] [Full Text] [Related]

  • 13. Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis.
    Mazzoni C, Saliola M, Falcone C.
    Mol Microbiol; 1992 Aug 09; 6(16):2279-86. PubMed ID: 1406268
    [Abstract] [Full Text] [Related]

  • 14. The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression.
    Arndt A, Eikmanns BJ.
    J Bacteriol; 2007 Oct 09; 189(20):7408-16. PubMed ID: 17693518
    [Abstract] [Full Text] [Related]

  • 15. Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae.
    Grauslund M, Rønnow B.
    Can J Microbiol; 2000 Dec 09; 46(12):1096-100. PubMed ID: 11142398
    [Abstract] [Full Text] [Related]

  • 16. Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production.
    Kim SJ, Lee JE, Lee DY, Park H, Kim KH, Park YC.
    Appl Microbiol Biotechnol; 2018 Oct 09; 102(20):8989-9002. PubMed ID: 30121750
    [Abstract] [Full Text] [Related]

  • 17. Ethanol yield improvement in Saccharomyces cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta mutant and molecular mechanism exploration based on the metabolic flux and transcriptomics approaches.
    Yang P, Jiang S, Lu S, Jiang S, Jiang S, Deng Y, Lu J, Wang H, Zhou Y.
    Microb Cell Fact; 2022 Aug 13; 21(1):160. PubMed ID: 35964044
    [Abstract] [Full Text] [Related]

  • 18. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C, Haack MB, Olsson L.
    Appl Microbiol Biotechnol; 2004 Feb 13; 63(5):578-83. PubMed ID: 12925863
    [Abstract] [Full Text] [Related]

  • 19. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM, Gancedo JM.
    Arch Microbiol; 2003 Oct 13; 180(4):293-7. PubMed ID: 12955310
    [Abstract] [Full Text] [Related]

  • 20. Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae.
    Mollapour M, Piper PW.
    FEMS Yeast Res; 2006 Dec 13; 6(8):1274-80. PubMed ID: 17156024
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.