These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
123 related items for PubMed ID: 31127156
1. Nerve sprouting capacity in a pharmacologically induced mouse model of spinal muscular atrophy. Rimer M, Seaberg BL, Yen PF, Lam S, Hastings RL, Lee YI, Thompson WJ, Feng Z, Metzger F, Paushkin S, Ko CP. Sci Rep; 2019 May 24; 9(1):7799. PubMed ID: 31127156 [Abstract] [Full Text] [Related]
2. Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy. Simon CM, Jablonka S, Ruiz R, Tabares L, Sendtner M. Hum Mol Genet; 2010 Mar 15; 19(6):973-86. PubMed ID: 20022887 [Abstract] [Full Text] [Related]
3. Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy. Deguise MO, De Repentigny Y, Tierney A, Beauvais A, Michaud J, Chehade L, Thabet M, Paul B, Reilly A, Gagnon S, Renaud JM, Kothary R. EBioMedicine; 2020 May 15; 55():102750. PubMed ID: 32339936 [Abstract] [Full Text] [Related]
4. Defects in neuromuscular junction remodelling in the Smn(2B/-) mouse model of spinal muscular atrophy. Murray LM, Beauvais A, Bhanot K, Kothary R. Neurobiol Dis; 2013 Jan 15; 49():57-67. PubMed ID: 22960106 [Abstract] [Full Text] [Related]
6. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Murray LM, Comley LH, Thomson D, Parkinson N, Talbot K, Gillingwater TH. Hum Mol Genet; 2008 Apr 01; 17(7):949-62. PubMed ID: 18065780 [Abstract] [Full Text] [Related]
7. Synaptic withdrawal following nerve injury is influenced by postnatal maturity, muscle-specific properties, and the presence of underlying pathology in mice. Mole AJ, Bell S, Thomson AK, Dissanayake KN, Ribchester RR, Murray LM. J Anat; 2020 Aug 01; 237(2):263-274. PubMed ID: 32311115 [Abstract] [Full Text] [Related]
8. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III. Udina E, Putman CT, Harris LR, Tyreman N, Cook VE, Gordon T. J Physiol; 2017 Mar 01; 595(5):1815-1829. PubMed ID: 27891608 [Abstract] [Full Text] [Related]
10. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Gavrilina TO, McGovern VL, Workman E, Crawford TO, Gogliotti RG, DiDonato CJ, Monani UR, Morris GE, Burghes AH. Hum Mol Genet; 2008 Apr 15; 17(8):1063-75. PubMed ID: 18178576 [Abstract] [Full Text] [Related]
11. Ultrastructural changes in diaphragm neuromuscular junctions in a severe mouse model for Spinal Muscular Atrophy and their prevention by bifunctional U7 snRNA correcting SMN2 splicing. Voigt T, Meyer K, Baum O, Schümperli D. Neuromuscul Disord; 2010 Nov 15; 20(11):744-52. PubMed ID: 20832308 [Abstract] [Full Text] [Related]
12. ZPR1 prevents R-loop accumulation, upregulates SMN2 expression and rescues spinal muscular atrophy. Kannan A, Jiang X, He L, Ahmad S, Gangwani L. Brain; 2020 Jan 01; 143(1):69-93. PubMed ID: 31828288 [Abstract] [Full Text] [Related]
13. CHP1 reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis. Janzen E, Mendoza-Ferreira N, Hosseinibarkooie S, Schneider S, Hupperich K, Tschanz T, Grysko V, Riessland M, Hammerschmidt M, Rigo F, Bennett CF, Kye MJ, Torres-Benito L, Wirth B. Brain; 2018 Aug 01; 141(8):2343-2361. PubMed ID: 29961886 [Abstract] [Full Text] [Related]
14. Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. Bowerman M, Murray LM, Boyer JG, Anderson CL, Kothary R. BMC Med; 2012 Mar 07; 10():24. PubMed ID: 22397316 [Abstract] [Full Text] [Related]
15. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Ling KK, Gibbs RM, Feng Z, Ko CP. Hum Mol Genet; 2012 Jan 01; 21(1):185-95. PubMed ID: 21968514 [Abstract] [Full Text] [Related]
16. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. Hosseinibarkooie S, Peters M, Torres-Benito L, Rastetter RH, Hupperich K, Hoffmann A, Mendoza-Ferreira N, Kaczmarek A, Janzen E, Milbradt J, Lamkemeyer T, Rigo F, Bennett CF, Guschlbauer C, Büschges A, Hammerschmidt M, Riessland M, Kye MJ, Clemen CS, Wirth B. Am J Hum Genet; 2016 Sep 01; 99(3):647-665. PubMed ID: 27499521 [Abstract] [Full Text] [Related]
17. Loganin possesses neuroprotective properties, restores SMN protein and activates protein synthesis positive regulator Akt/mTOR in experimental models of spinal muscular atrophy. Tseng YT, Chen CS, Jong YJ, Chang FR, Lo YC. Pharmacol Res; 2016 Sep 01; 111():58-75. PubMed ID: 27241020 [Abstract] [Full Text] [Related]
18. Defining the therapeutic window in a severe animal model of spinal muscular atrophy. Robbins KL, Glascock JJ, Osman EY, Miller MR, Lorson CL. Hum Mol Genet; 2014 Sep 01; 23(17):4559-68. PubMed ID: 24722206 [Abstract] [Full Text] [Related]
19. Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy. Dachs E, Piedrafita L, Hereu M, Esquerda JE, Calderó J. Neuroscience; 2013 Oct 10; 250():417-33. PubMed ID: 23876328 [Abstract] [Full Text] [Related]
20. SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Riessland M, Ackermann B, Förster A, Jakubik M, Hauke J, Garbes L, Fritzsche I, Mende Y, Blumcke I, Hahnen E, Wirth B. Hum Mol Genet; 2010 Apr 15; 19(8):1492-506. PubMed ID: 20097677 [Abstract] [Full Text] [Related] Page: [Next] [New Search]