These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


286 related items for PubMed ID: 31131693

  • 1. O-GlcNAc Transferase Promotes Compensated Cardiac Function and Protein Kinase A O-GlcNAcylation During Early and Established Pathological Hypertrophy From Pressure Overload.
    Zhu WZ, El-Nachef D, Yang X, Ledee D, Olson AK.
    J Am Heart Assoc; 2019 Jun 04; 8(11):e011260. PubMed ID: 31131693
    [Abstract] [Full Text] [Related]

  • 2. Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart.
    Prakoso D, Lim SY, Erickson JR, Wallace RS, Lees JG, Tate M, Kiriazis H, Donner DG, Henstridge DC, Davey JR, Qian H, Deo M, Parry LJ, Davidoff AJ, Gregorevic P, Chatham JC, De Blasio MJ, Ritchie RH.
    Cardiovasc Res; 2022 Jan 07; 118(1):212-225. PubMed ID: 33576380
    [Abstract] [Full Text] [Related]

  • 3. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure.
    Lunde IG, Aronsen JM, Kvaløy H, Qvigstad E, Sjaastad I, Tønnessen T, Christensen G, Grønning-Wang LM, Carlson CR.
    Physiol Genomics; 2012 Feb 01; 44(2):162-72. PubMed ID: 22128088
    [Abstract] [Full Text] [Related]

  • 4. Genetic inhibition of calcineurin induces diastolic dysfunction in mice with chronic pressure overload.
    Gelpi RJ, Gao S, Zhai P, Yan L, Hong C, Danridge LM, Ge H, Maejima Y, Donato M, Yokota M, Molkentin JD, Vatner DE, Vatner SF, Sadoshima J.
    Am J Physiol Heart Circ Physiol; 2009 Nov 01; 297(5):H1814-9. PubMed ID: 19717730
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy.
    Yokoe S, Asahi M, Takeda T, Otsu K, Taniguchi N, Miyoshi E, Suzuki K.
    Glycobiology; 2010 Oct 01; 20(10):1217-26. PubMed ID: 20484118
    [Abstract] [Full Text] [Related]

  • 6. Increased passive stiffness promotes diastolic dysfunction despite improved Ca2+ handling during left ventricular concentric hypertrophy.
    Røe ÅT, Aronsen JM, Skårdal K, Hamdani N, Linke WA, Danielsen HE, Sejersted OM, Sjaastad I, Louch WE.
    Cardiovasc Res; 2017 Aug 01; 113(10):1161-1172. PubMed ID: 28472418
    [Abstract] [Full Text] [Related]

  • 7. Temporal regulation of protein O-GlcNAc levels during pressure-overload cardiac hypertrophy.
    Zhu WZ, Ledee D, Olson AK.
    Physiol Rep; 2021 Aug 01; 9(15):e14965. PubMed ID: 34337900
    [Abstract] [Full Text] [Related]

  • 8. Intracellular O-linked glycosylation directly regulates cardiomyocyte L-type Ca2+ channel activity and excitation-contraction coupling.
    Ednie AR, Bennett ES.
    Basic Res Cardiol; 2020 Sep 10; 115(6):59. PubMed ID: 32910282
    [Abstract] [Full Text] [Related]

  • 9. E2f1 deletion attenuates infarct-induced ventricular remodeling without affecting O-GlcNAcylation.
    Dassanayaka S, Brittian KR, Jurkovic A, Higgins LA, Audam TN, Long BW, Harrison LT, Militello G, Riggs DW, Chitre MG, Uchida S, Muthusamy S, Gumpert AM, Jones SP.
    Basic Res Cardiol; 2019 May 31; 114(4):28. PubMed ID: 31152247
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. O-GlcNAcylation-induced GSK-3β activation deteriorates pressure overload-induced heart failure via lack of compensatory cardiac hypertrophy in mice.
    Matsuno M, Yokoe S, Nagatsuka T, Morihara H, Moriwaki K, Asahi M.
    Front Endocrinol (Lausanne); 2023 May 31; 14():1122125. PubMed ID: 37033243
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Alamandine improves cardiac remodeling induced by transverse aortic constriction in mice.
    Silva MM, de Souza-Neto FP, Jesus ICG, Gonçalves GK, Santuchi MC, Sanches BL, de Alcântara-Leonídio TC, Melo MB, Vieira MAR, Guatimosim S, Santos RAS, da Silva RF.
    Am J Physiol Heart Circ Physiol; 2021 Jan 01; 320(1):H352-H363. PubMed ID: 33124885
    [Abstract] [Full Text] [Related]

  • 14. Alterations in left ventricular function during intermittent hypoxia: Possible involvement of O-GlcNAc protein and MAPK signaling.
    Guo X, Shang J, Deng Y, Yuan X, Zhu D, Liu H.
    Int J Mol Med; 2015 Jul 01; 36(1):150-8. PubMed ID: 25936416
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Cardiomyocyte Oga haploinsufficiency increases O-GlcNAcylation but hastens ventricular dysfunction following myocardial infarction.
    Dassanayaka S, Brittian KR, Long BW, Higgins LA, Bradley JA, Audam TN, Jurkovic A, Gumpert AM, Harrison LT, Hartyánszky I, Perge P, Merkely B, Radovits T, Hanover JA, Jones SP.
    PLoS One; 2020 Jul 01; 15(11):e0242250. PubMed ID: 33253217
    [Abstract] [Full Text] [Related]

  • 17. Alterations in myofilament function contribute to left ventricular dysfunction in pigs early after myocardial infarction.
    van der Velden J, Merkus D, Klarenbeek BR, James AT, Boontje NM, Dekkers DH, Stienen GJ, Lamers JM, Duncker DJ.
    Circ Res; 2004 Nov 26; 95(11):e85-95. PubMed ID: 15528471
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Cardiomyocyte Ogt limits ventricular dysfunction in mice following pressure overload without affecting hypertrophy.
    Dassanayaka S, Brainard RE, Watson LJ, Long BW, Brittian KR, DeMartino AM, Aird AL, Gumpert AM, Audam TN, Kilfoil PJ, Muthusamy S, Hamid T, Prabhu SD, Jones SP.
    Basic Res Cardiol; 2017 May 26; 112(3):23. PubMed ID: 28299467
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.