These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
203 related items for PubMed ID: 31132127
1. Mixed Vehicle Emissions Induces Angiotensin II and Cerebral Microvascular Angiotensin Receptor Expression in C57Bl/6 Mice and Promotes Alterations in Integrity in a Blood-Brain Barrier Coculture Model. Suwannasual U, Lucero J, Davis G, McDonald JD, Lund AK. Toxicol Sci; 2019 Aug 01; 170(2):525-535. PubMed ID: 31132127 [Abstract] [Full Text] [Related]
2. Exposure to traffic-generated air pollutants mediates alterations in brain microvascular integrity in wildtype mice on a high-fat diet. Suwannasual U, Lucero J, McDonald JD, Lund AK. Environ Res; 2018 Jan 01; 160():449-461. PubMed ID: 29073573 [Abstract] [Full Text] [Related]
3. Exposure to traffic-generated air pollution promotes alterations in the integrity of the brain microvasculature and inflammation in female ApoE-/- mice. Adivi A, Lucero J, Simpson N, McDonald JD, Lund AK. Toxicol Lett; 2021 Mar 15; 339():39-50. PubMed ID: 33373663 [Abstract] [Full Text] [Related]
4. Vehicle emissions-exposure alters expression of systemic and tissue-specific components of the renin-angiotensin system and promotes outcomes associated with cardiovascular disease and obesity in wild-type C57BL/6 male mice. Phipps BL, Suwannasual U, Lucero J, Mitchell NA, Lund AK. Toxicol Rep; 2021 Mar 15; 8():846-862. PubMed ID: 33948438 [Abstract] [Full Text] [Related]
5. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice. Oppenheim HA, Lucero J, Guyot AC, Herbert LM, McDonald JD, Mabondzo A, Lund AK. Part Fibre Toxicol; 2013 Dec 17; 10():62. PubMed ID: 24344990 [Abstract] [Full Text] [Related]
6. Exposure to Traffic-Generated Pollutants Exacerbates the Expression of Factors Associated with the Pathophysiology of Alzheimer's Disease in Aged C57BL/6 Wild-Type Mice. Armstrong TD, Suwannasual U, Kennedy CL, Thasma A, Schneider LJ, Phillippi D, Lund AK. J Alzheimers Dis; 2020 Dec 17; 78(4):1453-1471. PubMed ID: 33164937 [Abstract] [Full Text] [Related]
7. The role of the lectin-like oxLDL receptor (LOX-1) in traffic-generated air pollution exposure-mediated alteration of the brain microvasculature in Apolipoprotein (Apo) E knockout mice. Lucero J, Suwannasual U, Herbert LM, McDonald JD, Lund AK. Inhal Toxicol; 2017 May 17; 29(6):266-281. PubMed ID: 28816559 [Abstract] [Full Text] [Related]
8. Histological features of non-alcoholic fatty liver disease revealed in response to mixed vehicle emission exposure and consumption of a high-fat diet in wildtype C57Bl/6 male mice. Schneider LJ, Santiago I, Johnson B, Stanley AH, Penaredondo B, Lund AK. Ecotoxicol Environ Saf; 2023 Aug 17; 261():115094. PubMed ID: 37285676 [Abstract] [Full Text] [Related]
9. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T. Neuroscience; 2010 Dec 15; 171(3):852-8. PubMed ID: 20870012 [Abstract] [Full Text] [Related]
10. Metabolomic changes in murine serum following inhalation exposure to gasoline and diesel engine emissions. Brower JB, Doyle-Eisele M, Moeller B, Stirdivant S, McDonald JD, Campen MJ. Inhal Toxicol; 2016 Apr 15; 28(5):241-50. PubMed ID: 27017952 [Abstract] [Full Text] [Related]
11. Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in Apolipoprotein E knockout mice. Fitch MN, Phillippi D, Zhang Y, Lucero J, Pandey RS, Liu J, Brower J, Allen MS, Campen MJ, McDonald JD, Lund AK. Environ Res; 2020 Feb 15; 181():108913. PubMed ID: 31753468 [Abstract] [Full Text] [Related]
12. Traffic-generated air pollution - Exposure mediated expression of factors associated with demyelination in a female apolipoprotein E-/- mouse model. Adivi A, Lucero J, Simpson N, McDonald JD, Lund AK. Neurotoxicol Teratol; 2022 Feb 15; 90():107071. PubMed ID: 35016995 [Abstract] [Full Text] [Related]
13. A novel interaction between soluble epoxide hydrolase and the AT1 receptor in retinal microvascular damage. Wang MH, Ibrahim AS, Hsiao G, Tawfik A, Al-Shabrawey M. Prostaglandins Other Lipid Mediat; 2020 Jun 15; 148():106449. PubMed ID: 32360774 [Abstract] [Full Text] [Related]
14. Traffic generated emissions alter the lung microbiota by promoting the expansion of Proteobacteria in C57Bl/6 mice placed on a high-fat diet. Daniel S, Pusadkar V, McDonald J, Mirpuri J, Azad RK, Goven A, Lund AK. Ecotoxicol Environ Saf; 2021 Apr 15; 213():112035. PubMed ID: 33581487 [Abstract] [Full Text] [Related]
15. Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. Fleegal-DeMotta MA, Doghu S, Banks WA. J Cereb Blood Flow Metab; 2009 Mar 15; 29(3):640-7. PubMed ID: 19127280 [Abstract] [Full Text] [Related]
16. Brain Renin-Angiotensin System Blockade Attenuates Methamphetamine-Induced Hyperlocomotion and Neurotoxicity. Jiang L, Zhu R, Bu Q, Li Y, Shao X, Gu H, Kong J, Luo L, Long H, Guo W, Tian J, Zhao Y, Cen X. Neurotherapeutics; 2018 Apr 15; 15(2):500-510. PubMed ID: 29464572 [Abstract] [Full Text] [Related]
17. Cerebral ischemia induced inflammatory response and altered glutaminergic function mediated through brain AT1 and not AT2 receptor. Justin A, Divakar S, Ramanathan M. Biomed Pharmacother; 2018 Jun 15; 102():947-958. PubMed ID: 29710550 [Abstract] [Full Text] [Related]
18. Angiotensin II type 1 receptor deficiency protects against the impairment of blood-brain barrier in a mouse model of traumatic brain injury. Yang L, Chen Z, Wan X, Liu M, Wu J, Chen Y, Zhang G, Fan Z. Int J Neurosci; 2023 Jun 15; 133(6):604-611. PubMed ID: 34219583 [Abstract] [Full Text] [Related]
19. Involvement of p38 MAPK activation mediated through AT1 receptors on spinal astrocytes and neurons in angiotensin II- and III-induced nociceptive behavior in mice. Nemoto W, Ogata Y, Nakagawasai O, Yaoita F, Tadano T, Tan-No K. Neuropharmacology; 2015 Dec 15; 99():221-31. PubMed ID: 26209257 [Abstract] [Full Text] [Related]
20. Diesel exhaust particle inhalation in conjunction with high-fat diet consumption alters the expression of pulmonary SARS-COV-2 infection pathways, which is mitigated by probiotic treatment in C57BL/6 male mice. Nguyen-Alley K, Daniel S, Phillippi DT, Armstrong TD, Johnson B, Ihemeremadu W, Lund AK. Part Fibre Toxicol; 2024 Sep 29; 21(1):40. PubMed ID: 39343929 [Abstract] [Full Text] [Related] Page: [Next] [New Search]