These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide. Avendaño C, Lafitte T, Galindo A, Adjiman CS, Jackson G, Müller EA. J Phys Chem B; 2011 Sep 29; 115(38):11154-69. PubMed ID: 21815624 [Abstract] [Full Text] [Related]
6. Accurate statistical associating fluid theory for chain molecules formed from Mie segments. Lafitte T, Apostolakou A, Avendaño C, Galindo A, Adjiman CS, Müller EA, Jackson G. J Chem Phys; 2013 Oct 21; 139(15):154504. PubMed ID: 24160524 [Abstract] [Full Text] [Related]
7. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments. Papaioannou V, Lafitte T, Avendaño C, Adjiman CS, Jackson G, Müller EA, Galindo A. J Chem Phys; 2014 Feb 07; 140(5):054107. PubMed ID: 24511922 [Abstract] [Full Text] [Related]
8. SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes. Avendaño C, Lafitte T, Adjiman CS, Galindo A, Müller EA, Jackson G. J Phys Chem B; 2013 Mar 07; 117(9):2717-33. PubMed ID: 23311931 [Abstract] [Full Text] [Related]
10. Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States. Müller EA, Mejía A. Langmuir; 2017 Oct 24; 33(42):11518-11529. PubMed ID: 28602088 [Abstract] [Full Text] [Related]
11. Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR). Forte E, Llovell F, Vega LF, Trusler JP, Galindo A. J Chem Phys; 2011 Apr 21; 134(15):154102. PubMed ID: 21513370 [Abstract] [Full Text] [Related]
12. Vapour-liquid interfacial properties of square-well chains from density functional theory and Monte Carlo simulation. Martínez-Ruiz FJ, Blas FJ, Moreno-Ventas Bravo AI, Míguez JM, MacDowell LG. Phys Chem Chem Phys; 2017 May 17; 19(19):12296-12309. PubMed ID: 28513739 [Abstract] [Full Text] [Related]
13. Phase behavior of dipolar associating fluids from the SAFT-VR+D equation of state. Zhao H, Ding Y, McCabe C. J Chem Phys; 2007 Aug 28; 127(8):084514. PubMed ID: 17764276 [Abstract] [Full Text] [Related]
14. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation. Garrido JM, Algaba J, Míguez JM, Mendiboure B, Moreno-Ventas Bravo AI, Piñeiro MM, Blas FJ. J Chem Phys; 2016 Apr 14; 144(14):144702. PubMed ID: 27083740 [Abstract] [Full Text] [Related]
15. Interfacial properties of water/CO2: a comprehensive description through a Gradient Theory-SAFT-VR Mie approach. Lafitte T, Mendiboure B, Piñeiro MM, Bessières D, Miqueu C. J Phys Chem B; 2010 Sep 02; 114(34):11110-6. PubMed ID: 20698517 [Abstract] [Full Text] [Related]
16. Development of a fused-sphere SAFT-γ Mie force field for poly(vinyl alcohol) and poly(ethylene). Walker CC, Genzer J, Santiso EE. J Chem Phys; 2019 Jan 21; 150(3):034901. PubMed ID: 30660157 [Abstract] [Full Text] [Related]
17. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces. Ghobadi AF, Elliott JR. J Chem Phys; 2014 Jul 14; 141(2):024708. PubMed ID: 25028039 [Abstract] [Full Text] [Related]
18. A density functional theory for vapor-liquid interfaces using the PCP-SAFT equation of state. Gross J. J Chem Phys; 2009 Nov 28; 131(20):204705. PubMed ID: 19947702 [Abstract] [Full Text] [Related]
19. Semiclassical approach to model quantum fluids using the statistical associating fluid theory for systems with potentials of variable range. Trejos VM, Gil-Villegas A. J Chem Phys; 2012 May 14; 136(18):184506. PubMed ID: 22583299 [Abstract] [Full Text] [Related]
20. SGTPy: A Python Code for Calculating the Interfacial Properties of Fluids Based on the Square Gradient Theory Using the SAFT-VR Mie Equation of State. Mejía A, Müller EA, Chaparro Maldonado G. J Chem Inf Model; 2021 Mar 22; 61(3):1244-1250. PubMed ID: 33595304 [Abstract] [Full Text] [Related] Page: [Next] [New Search]