These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 31147106

  • 1. Changes of third ventricle diameter (TVD) mirror changes of the entire ventricular system after initial therapy and during follow-up in pediatric hydrocephalus.
    Kerscher SR, Schweizer LL, Nägele T, Weichselbaum A, Haas-Lude K, Schuhmann MU.
    Eur J Paediatr Neurol; 2019 Jul; 23(4):571-580. PubMed ID: 31147106
    [Abstract] [Full Text] [Related]

  • 2. Changes of third ventricle diameter (TVD) mirror changes of the entire ventricular system at acute shunt failure and after shunt revision in pediatric hydrocephalus.
    Kerscher SR, Schweizer LL, Haas-Lude K, Bevot A, Schuhmann MU.
    Childs Nerv Syst; 2020 Sep; 36(9):2033-2039. PubMed ID: 32215715
    [Abstract] [Full Text] [Related]

  • 3. Transtemporal Ultrasound (US) Assessment of Third Ventricle Diameter (TVD): Comparison of US and MRI TVD in Pediatric Patients.
    Kerscher SR, Schweizer LL, Nägele T, Bevot A, Alber M, Schuhmann MU.
    Neuropediatrics; 2020 Jun; 51(3):185-191. PubMed ID: 31791068
    [Abstract] [Full Text] [Related]

  • 4. Frontal and occipital horn ratio: A linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus.
    O'Hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M.
    Pediatr Neurosurg; 1998 Nov; 29(5):245-9. PubMed ID: 9917541
    [Abstract] [Full Text] [Related]

  • 5. The accuracy of linear indices of ventricular volume in pediatric hydrocephalus: technical note.
    Ragan DK, Cerqua J, Nash T, McKinstry RC, Shimony JS, Jones BV, Mangano FT, Holland SK, Yuan W, Limbrick DD.
    J Neurosurg Pediatr; 2015 Jun; 15(6):547-51. PubMed ID: 25745953
    [Abstract] [Full Text] [Related]

  • 6. Correlations of atrial diameter and frontooccipital horn ratio with ventricle size in fetal ventriculomegaly.
    Pisapia JM, Rozycki M, Akbari H, Bakas S, Thawani JP, Moldenhauer JS, Storm PB, Zarnow DM, Davatzikos C, Heuer GG.
    J Neurosurg Pediatr; 2017 Mar; 19(3):300-306. PubMed ID: 28059680
    [Abstract] [Full Text] [Related]

  • 7. Frontal Occipital and Frontal Temporal Horn Ratios: Comparison and Validation of Head Ultrasound-Derived Indexes With MRI and Ventricular Volumes in Infantile Ventriculomegaly.
    Radhakrishnan R, Brown BP, Kralik SF, Bain D, Persohn S, Territo PR, Jea A, Karmazyn B.
    AJR Am J Roentgenol; 2019 Oct; 213(4):925-931. PubMed ID: 31310185
    [Abstract] [Full Text] [Related]

  • 8. Morphological evaluation of the normal and hydrocephalic third ventricle on cranial magnetic resonance imaging in children: a retrospective study.
    Isıklar S, Turan Ozdemir S, Ozkaya G, Ozpar R, Parlak M.
    Pediatr Radiol; 2023 Feb; 53(2):282-296. PubMed ID: 35994062
    [Abstract] [Full Text] [Related]

  • 9. Measures of ventricles and evans' index: from neonate to adolescent.
    Sarı E, Sarı S, Akgün V, Özcan E, Ìnce S, Babacan O, Saldır M, Açıkel C, Başbozkurt G, Yeşilkaya Ş, Kılıc C, Kara K, Vurucu S, Kocaoğlu M, Yeşilkaya E.
    Pediatr Neurosurg; 2015 Feb; 50(1):12-7. PubMed ID: 25613691
    [Abstract] [Full Text] [Related]

  • 10. Relationship between ventricular size, white matter injury, and neurocognition in children with stable, treated hydrocephalus.
    Kulkarni AV, Donnelly R, Mabbott DJ, Widjaja E.
    J Neurosurg Pediatr; 2015 Sep; 16(3):267-74. PubMed ID: 26046689
    [Abstract] [Full Text] [Related]

  • 11. Role of radiological parameters in predicting overall shunt outcome after ventriculoperitoneal shunt insertion in pediatric patients with obstructive hydrocephalus.
    Patra DP, Bir SC, Maiti TK, Kalakoti P, Cuellar H, Guthikonda B, Sun H, Notarianni C, Nanda A.
    Neurosurg Focus; 2016 Nov; 41(5):E4. PubMed ID: 27798979
    [Abstract] [Full Text] [Related]

  • 12. Endoscopic third ventriculostomy associated 3D-construcive inference steady state MRI for obstructed hydrocephalus: a retrospective study.
    Shi J, Fu W, Wu Q, Zhang H, Zheng Z, Zhu J.
    Clin Neurol Neurosurg; 2013 Jul; 115(7):896-901. PubMed ID: 23026416
    [Abstract] [Full Text] [Related]

  • 13. Three-dimensional constructive interference in steady-state magnetic resonance imaging in obstructive hydrocephalus: relevance for endoscopic third ventriculostomy and clinical results.
    Kunz M, Schulte-Altedorneburg G, Uhl E, Schmid-Elsaesser R, Schöller K, Zausinger S.
    J Neurosurg; 2008 Nov; 109(5):931-8. PubMed ID: 18976087
    [Abstract] [Full Text] [Related]

  • 14. Changes in ventricular volume in hydrocephalic children following successful endoscopic third ventriculostomy.
    St George E, Natarajan K, Sgouros S.
    Childs Nerv Syst; 2004 Nov; 20(11-12):834-8. PubMed ID: 15221248
    [Abstract] [Full Text] [Related]

  • 15. The lack of relationship between intracranial pressure and cerebral ventricle indices based on brain computed tomography in patients undergoing ventriculoperitoneal shunt.
    Kim E, Lim YJ, Park HS, Kim SK, Jeon YT, Hwang JW, Lee YS, Park HP.
    Acta Neurochir (Wien); 2015 Feb; 157(2):257-63. PubMed ID: 25503296
    [Abstract] [Full Text] [Related]

  • 16. Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus.
    Tuli S, O'Hayon B, Drake J, Clarke M, Kestle J.
    Neurosurgery; 1999 Dec; 45(6):1329-33; discussion 1333-5. PubMed ID: 10598700
    [Abstract] [Full Text] [Related]

  • 17. Comparison of hydrocephalus metrics between infants successfully treated with endoscopic third ventriculostomy with choroid plexus cauterization and those treated with a ventriculoperitoneal shunt: a multicenter matched-cohort analysis.
    Dewan MC, Lim J, Gannon SR, Heaner D, Davis MC, Vaughn B, Chern JJ, Rocque BG, Klimo P, Wellons JC, Naftel RP.
    J Neurosurg Pediatr; 2018 Apr; 21(4):339-345. PubMed ID: 29393809
    [Abstract] [Full Text] [Related]

  • 18. Intraparenchymal ventricular diverticula in chronic obstructive hydrocephalus: prevalence, imaging features and evolution.
    Manara R, Citton V, Traverso A, Zanotti MC, Faggin R, Sartori S, Perini R, Milanese L, Briani C, Bona F, Rolma G, Rossetto M, Zerbo F, Di Salle F, d'Avella D.
    Acta Neurochir (Wien); 2015 Oct; 157(10):1721-30. PubMed ID: 26298592
    [Abstract] [Full Text] [Related]

  • 19. Rapid sequence magnetic resonance imaging in the assessment of children with hydrocephalus.
    O'Neill BR, Pruthi S, Bains H, Robison R, Weir K, Ojemann J, Ellenbogen R, Avellino A, Browd SR.
    World Neurosurg; 2013 Dec; 80(6):e307-12. PubMed ID: 23111234
    [Abstract] [Full Text] [Related]

  • 20. Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus.
    Quon JL, Han M, Kim LH, Koran ME, Chen LC, Lee EH, Wright J, Ramaswamy V, Lober RM, Taylor MD, Grant GA, Cheshier SH, Kestle JRW, Edwards MSB, Yeom KW.
    J Neurosurg Pediatr; 2021 Feb 01; 27(2):131-138. PubMed ID: 33260138
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.