These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 31158773
1. Fractal theory and controllable preparation of centimeter level silver nanowire arrays and their application in melamine detection as SERS substrates. Xu D, Kang W, Zhang S, Yang W, Jiang H, Lei Y, Chen J. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct 05; 221():117184. PubMed ID: 31158773 [Abstract] [Full Text] [Related]
2. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. Huang J, Chen F, Zhang Q, Zhan Y, Ma D, Xu K, Zhao Y. ACS Appl Mater Interfaces; 2015 Mar 18; 7(10):5725-35. PubMed ID: 25731067 [Abstract] [Full Text] [Related]
3. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Zhang C, You T, Yang N, Gao Y, Jiang L, Yin P. Food Chem; 2019 Jul 30; 287():363-368. PubMed ID: 30857711 [Abstract] [Full Text] [Related]
4. Fabrication of high performance surface enhanced Raman scattering substrates by a solid-state ionics method. Xu D, Dong Z, Sun JL. Nanotechnology; 2012 Mar 30; 23(12):125705. PubMed ID: 22407165 [Abstract] [Full Text] [Related]
5. Quantitative surface enhanced Raman scattering detection based on the "sandwich" structure substrate. Zhang J, Qu S, Zhang L, Tang A, Wang Z. Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug 30; 79(3):625-30. PubMed ID: 21531614 [Abstract] [Full Text] [Related]
6. A novel and controllable SERS system for crystal violet and Rhodamine B detection based on copper nanonoodle substrates. Xu D, Li J, Zhang S, Zhang Y, Yang W, Wang Z, Chen J. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul 05; 275():121165. PubMed ID: 35313175 [Abstract] [Full Text] [Related]
7. Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine. Cao Q, Yuan K, Yu J, Delaunay JJ, Che R. J Colloid Interface Sci; 2017 Mar 15; 490():23-28. PubMed ID: 27870955 [Abstract] [Full Text] [Related]
8. Simultaneous colorimetric and surface-enhanced Raman scattering detection of melamine from milk. Liu S, Kannegulla A, Kong X, Sun R, Liu Y, Wang R, Yu Q, Wang AX. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr 15; 231():118130. PubMed ID: 32044710 [Abstract] [Full Text] [Related]
9. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor. Hu Y, Lu X. J Food Sci; 2016 May 15; 81(5):N1272-80. PubMed ID: 27061315 [Abstract] [Full Text] [Related]
10. [Alkaline silver colloid for surface enhanced Raman scattering and application to detection of melamine doped milk]. Tang JQ, Tian C, Zeng CY, Man SQ. Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar 15; 33(3):709-13. PubMed ID: 23705438 [Abstract] [Full Text] [Related]
11. Silver deposited polystyrene (PS) microspheres for surface-enhanced Raman spectroscopic-encoding and rapid label-free detection of melamine in milk powder. Zhao Y, Luo W, Kanda P, Cheng H, Chen Y, Wang S, Huan S. Talanta; 2013 Sep 15; 113():7-13. PubMed ID: 23708616 [Abstract] [Full Text] [Related]
12. Interaction of melamine molecules with silver nanoparticles explored by surface-enhanced Raman scattering and density functional theory calculations. Chen X, Hu Y, Gao J, Zhang Y, Li S. Appl Spectrosc; 2013 May 15; 67(5):491-7. PubMed ID: 23643037 [Abstract] [Full Text] [Related]
13. Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor. Li X, Lee HK, Phang IY, Lee CK, Ling XY. Anal Chem; 2014 Oct 21; 86(20):10437-44. PubMed ID: 25230236 [Abstract] [Full Text] [Related]
14. Detection of melamine on fractals of unmodified gold nanoparticles by surface-enhanced Raman scattering. Roy PK, Huang YF, Chattopadhyay S. J Biomed Opt; 2014 Jan 21; 19(1):011002. PubMed ID: 23752785 [Abstract] [Full Text] [Related]
15. Preparation and SERS performance of silver nanowires arrays on paper by automatic writing method. Wang K, Qiu Z, Qin Y, Feng L, Huang L, Xiao G. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov 15; 281():121580. PubMed ID: 35809423 [Abstract] [Full Text] [Related]
16. Rapid Detection of Melamine in Milk Using Immunological Separation and Surface Enhanced Raman Spectroscopy. Li X, Feng S, Hu Y, Sheng W, Zhang Y, Yuan S, Zeng H, Wang S, Lu X. J Food Sci; 2015 Jun 15; 80(6):C1196-201. PubMed ID: 25920520 [Abstract] [Full Text] [Related]
17. Silver nanocube-mediated sensitive immunoassay based on surface-enhanced Raman scattering assisted by etched silicon nanowire arrays. Jiang T, Zhang L, Zhou J. Analyst; 2014 Nov 21; 139(22):5893-900. PubMed ID: 25243249 [Abstract] [Full Text] [Related]
18. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering. Giovannozzi AM, Rolle F, Sega M, Abete MC, Marchis D, Rossi AM. Food Chem; 2014 Sep 15; 159():250-6. PubMed ID: 24767052 [Abstract] [Full Text] [Related]
19. Direct detection of melamine in infant formula milk powder solution based on SERS effect of silver film over nanospheres. Xiao G, Li L, Yan A, He X. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec 05; 223():117269. PubMed ID: 31247461 [Abstract] [Full Text] [Related]
20. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application. Goh MS, Lee YH, Pedireddy S, Phang IY, Tjiu WW, Tan JM, Ling XY. Langmuir; 2012 Oct 09; 28(40):14441-9. PubMed ID: 22970778 [Abstract] [Full Text] [Related] Page: [Next] [New Search]