These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


454 related items for PubMed ID: 31161881

  • 21. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.
    Tonin AM, Amaral AU, Busanello EN, Grings M, Castilho RF, Wajner M.
    J Bioenerg Biomembr; 2013 Feb; 45(1-2):47-57. PubMed ID: 23065309
    [Abstract] [Full Text] [Related]

  • 22. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake.
    Gill RM, O'Brien M, Young A, Gardiner D, Mailloux RJ.
    PLoS One; 2018 Feb; 13(2):e0192801. PubMed ID: 29444156
    [Abstract] [Full Text] [Related]

  • 23. Brown adipose tissue mitochondria: modulation by GDP and fatty acids depends on the respiratory substrates.
    De Meis L, Ketzer LA, Camacho-Pereira J, Galina A.
    Biosci Rep; 2012 Feb; 32(1):53-9. PubMed ID: 21561434
    [Abstract] [Full Text] [Related]

  • 24. The impact of a short-term high-fat diet on mitochondrial respiration, reactive oxygen species production, and dynamics in oxidative and glycolytic skeletal muscles of young rats.
    Leduc-Gaudet JP, Reynaud O, Chabot F, Mercier J, Andrich DE, St-Pierre DH, Gouspillou G.
    Physiol Rep; 2018 Feb; 6(4):. PubMed ID: 29479852
    [Abstract] [Full Text] [Related]

  • 25. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation.
    Bezaire V, Spriet LL, Campbell S, Sabet N, Gerrits M, Bonen A, Harper ME.
    FASEB J; 2005 Jun; 19(8):977-9. PubMed ID: 15814607
    [Abstract] [Full Text] [Related]

  • 26. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat.
    Warren BE, Lou PH, Lucchinetti E, Zhang L, Clanachan AS, Affolter A, Hersberger M, Zaugg M, Lemieux H.
    Am J Physiol Endocrinol Metab; 2014 Mar; 306(6):E658-67. PubMed ID: 24425766
    [Abstract] [Full Text] [Related]

  • 27. High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles.
    Ramos-Filho D, Chicaybam G, de-Souza-Ferreira E, Guerra Martinez C, Kurtenbach E, Casimiro-Lopes G, Galina A.
    PLoS One; 2015 Mar; 10(6):e0131766. PubMed ID: 26121248
    [Abstract] [Full Text] [Related]

  • 28. Fatty acid oxidation by skeletal muscle homogenates from morbidly obese black and white American women.
    Privette JD, Hickner RC, Macdonald KG, Pories WJ, Barakat HA.
    Metabolism; 2003 Jun; 52(6):735-8. PubMed ID: 12800100
    [Abstract] [Full Text] [Related]

  • 29. Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle.
    Venditti P, Masullo P, Di Meo S.
    Arch Biochem Biophys; 1999 Dec 15; 372(2):315-20. PubMed ID: 10600170
    [Abstract] [Full Text] [Related]

  • 30. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat.
    Harper RD, Saggerson ED.
    Biochem J; 1975 Dec 15; 152(3):485-94. PubMed ID: 1227502
    [Abstract] [Full Text] [Related]

  • 31. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.
    Zabielski P, Lanza IR, Gopala S, Heppelmann CJ, Bergen HR, Dasari S, Nair KS.
    Diabetes; 2016 Mar 15; 65(3):561-73. PubMed ID: 26718503
    [Abstract] [Full Text] [Related]

  • 32. Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia.
    Horscroft JA, Burgess SL, Hu Y, Murray AJ.
    PLoS One; 2015 Mar 15; 10(9):e0138564. PubMed ID: 26390043
    [Abstract] [Full Text] [Related]

  • 33. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism.
    Koves TR, Noland RC, Bates AL, Henes ST, Muoio DM, Cortright RN.
    Am J Physiol Cell Physiol; 2005 May 15; 288(5):C1074-82. PubMed ID: 15647392
    [Abstract] [Full Text] [Related]

  • 34. Tissue-specific and substrate-specific mitochondrial bioenergetics in feline cardiac and skeletal muscles.
    Christiansen LB, Dela F, Koch J, Yokota T.
    J Vet Med Sci; 2015 Jun 15; 77(6):669-75. PubMed ID: 25716052
    [Abstract] [Full Text] [Related]

  • 35. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle.
    Mujahid A, Akiba Y, Toyomizu M.
    Am J Physiol Regul Integr Comp Physiol; 2009 Sep 15; 297(3):R690-8. PubMed ID: 19553496
    [Abstract] [Full Text] [Related]

  • 36. Acute effect of fatty acids on metabolism and mitochondrial coupling in skeletal muscle.
    Hirabara SM, Silveira LR, Alberici LC, Leandro CV, Lambertucci RH, Polimeno GC, Cury Boaventura MF, Procopio J, Vercesi AE, Curi R.
    Biochim Biophys Acta; 2006 Jan 15; 1757(1):57-66. PubMed ID: 16375848
    [Abstract] [Full Text] [Related]

  • 37. Relevance of fatty acid oxidation in regulation of the outer mitochondrial membrane permeability for ADP.
    Toleikis A, Liobikas J, Trumbeckaite S, Majiene D.
    FEBS Lett; 2001 Dec 07; 509(2):245-9. PubMed ID: 11741597
    [Abstract] [Full Text] [Related]

  • 38. The potential for mitochondrial fat oxidation in human skeletal muscle influences whole body fat oxidation during low-intensity exercise.
    Sahlin K, Mogensen M, Bagger M, Fernström M, Pedersen PK.
    Am J Physiol Endocrinol Metab; 2007 Jan 07; 292(1):E223-30. PubMed ID: 16926382
    [Abstract] [Full Text] [Related]

  • 39. A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats.
    Le Guen M, Chaté V, Hininger-Favier I, Laillet B, Morio B, Pieroni G, Schlattner U, Pison C, Dubouchaud H.
    Am J Physiol Endocrinol Metab; 2016 Feb 01; 310(3):E213-24. PubMed ID: 26646102
    [Abstract] [Full Text] [Related]

  • 40. Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise.
    Miotto PM, Steinberg GR, Holloway GP.
    Biochem J; 2017 Feb 15; 474(4):557-569. PubMed ID: 27941154
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.