These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
184 related items for PubMed ID: 31172144
1. An "OFF-ON" quantum dot-graphene oxide bioprobe for sensitive detection of micrococcal nuclease of Staphylococcus aureus. Hunsur Ravikumar C, Ira Gowda M, Balakrishna RG. Analyst; 2019 Jun 24; 144(13):3999-4005. PubMed ID: 31172144 [Abstract] [Full Text] [Related]
2. An ultra-high sensitive platform for fluorescence detection of micrococcal nuclease based on graphene oxide. He Y, Xiong LH, Xing XJ, Tang HW, Pang DW. Biosens Bioelectron; 2013 Apr 15; 42():467-73. PubMed ID: 23238320 [Abstract] [Full Text] [Related]
3. A high sensitive and specific QDs FRET bioprobe for MNase. Huang S, Xiao Q, He ZK, Liu Y, Tinnefeld P, Su XR, Peng XN. Chem Commun (Camb); 2008 Dec 07; (45):5990-2. PubMed ID: 19030562 [Abstract] [Full Text] [Related]
4. Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA. Chen Y, Wang L, Jiang W. Talanta; 2012 Aug 15; 97():533-8. PubMed ID: 22841119 [Abstract] [Full Text] [Related]
5. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Arvand M, Mirroshandel AA. Biosens Bioelectron; 2017 Oct 15; 96():324-331. PubMed ID: 28525850 [Abstract] [Full Text] [Related]
6. Ultrasensitive detection of micrococcal nuclease activity and Staphylococcus aureus contamination using optical biosensor technology-A review. Samani SS, Khojastehnezhad A, Ramezani M, Alibolandi M, Yazdi FT, Mortazavi SA, Khoshbin Z, Abnous K, Taghdisi SM. Talanta; 2021 May 01; 226():122168. PubMed ID: 33676710 [Abstract] [Full Text] [Related]
7. A positively charged QDs-based FRET probe for micrococcal nuclease detection. Qiu T, Zhao D, Zhou G, Liang Y, He Z, Liu Z, Peng X, Zhou L. Analyst; 2010 Sep 01; 135(9):2394-9. PubMed ID: 20676436 [Abstract] [Full Text] [Related]
8. Detection of micrococcal nuclease for identifying Staphylococcus aureus based on DNA templated fluorescent copper nanoclusters. Qing T, Long C, Wang X, Zhang K, Zhang P, Feng B. Mikrochim Acta; 2019 Mar 18; 186(4):248. PubMed ID: 30887121 [Abstract] [Full Text] [Related]
9. Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag2Se quantum dots, graphene oxide and gold nanoparticles as a fluorescent probe. Adegoke O, Pereira-Barros MA, Zolotovskaya S, Abdolvand A, Daeid NN. Mikrochim Acta; 2020 Jan 08; 187(2):104. PubMed ID: 31912290 [Abstract] [Full Text] [Related]
10. The inhibition of fluorescence resonance energy transfer between multicolor quantum dots for rapid and sensitive detection of Staphylococcus aureus. Wang B, Wang Q, Ma M, Cai Z. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 25; 135():428-34. PubMed ID: 25105265 [Abstract] [Full Text] [Related]
11. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Arvand M, Mirroshandel AA. Food Chem; 2019 May 15; 280():115-122. PubMed ID: 30642476 [Abstract] [Full Text] [Related]
12. High specific MNase assay for rapid identification of Staphylococcus aureus using AT-rich dsDNA substrate. Wang X, Long C, Xu X, Qing T, Zhang P, Feng B. Talanta; 2019 Nov 01; 204():693-699. PubMed ID: 31357354 [Abstract] [Full Text] [Related]
13. Intracellular Pathogen Detection Based on Dual-Recognition Units Constructed Fluorescence Resonance Energy Transfer Nanoprobe. Fu F, Zhang Y, Li L, Wang H, Li Q, Tao X, Song Y, Song E. Anal Chem; 2020 Aug 18; 92(16):11462-11468. PubMed ID: 32693581 [Abstract] [Full Text] [Related]
14. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO. Sun X, Liu B, Yang C, Li C. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct 15; 131():288-93. PubMed ID: 24835931 [Abstract] [Full Text] [Related]
15. A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori. Liu Z, Su X. Biosens Bioelectron; 2017 Jan 15; 87():66-72. PubMed ID: 27522014 [Abstract] [Full Text] [Related]
16. Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins. Gu H, Hao L, Ye H, Ma P, Wang Z. Mikrochim Acta; 2021 Mar 09; 188(4):118. PubMed ID: 33687572 [Abstract] [Full Text] [Related]
17. Engineering of a Dual-Recognition Ratiometric Fluorescent Nanosensor with a Remarkably Large Stokes Shift for Accurate Tracking of Pathogenic Bacteria at the Single-Cell Level. Shen Y, Wu T, Zhang Y, Ling N, Zheng L, Zhang SL, Sun Y, Wang X, Ye Y. Anal Chem; 2020 Oct 06; 92(19):13396-13404. PubMed ID: 32867467 [Abstract] [Full Text] [Related]
18. Fluorescent "on-off-on" switching sensor based on CdTe quantum dots coupled with multiwalled carbon nanotubes@graphene oxide nanoribbons for simultaneous monitoring of dual foreign DNAs in transgenic soybean. Li Y, Sun L, Qian J, Long L, Li H, Liu Q, Cai J, Wang K. Biosens Bioelectron; 2017 Jun 15; 92():26-32. PubMed ID: 28182975 [Abstract] [Full Text] [Related]
19. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide. Zhou ZM, Zhou J, Chen J, Yu RN, Zhang MZ, Song JT, Zhao YD. Biosens Bioelectron; 2014 Sep 15; 59():397-403. PubMed ID: 24768819 [Abstract] [Full Text] [Related]
20. A graphene oxide platform for energy transfer-based detection of protease activity. Li J, Lu CH, Yao QH, Zhang XL, Liu JJ, Yang HH, Chen GN. Biosens Bioelectron; 2011 May 15; 26(9):3894-9. PubMed ID: 21458253 [Abstract] [Full Text] [Related] Page: [Next] [New Search]