These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 31174139

  • 1. Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of Rhodamine B.
    Yan Z, Yi H, Wang L, Zhou X, Yan R, Zhang D, Wang S, Su L, Zhou S.
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct 05; 221():117203. PubMed ID: 31174139
    [Abstract] [Full Text] [Related]

  • 2. Fluorescent aptasensor for 17β-estradiol determination based on gold nanoparticles quenching the fluorescence of Rhodamine B.
    Ni X, Xia B, Wang L, Ye J, Du G, Feng H, Zhou X, Zhang T, Wang W.
    Anal Biochem; 2017 Apr 15; 523():17-23. PubMed ID: 28137603
    [Abstract] [Full Text] [Related]

  • 3. Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles.
    Zhou X, Wang L, Shen G, Zhang D, Xie J, Mamut A, Huang W, Zhou S.
    Mikrochim Acta; 2018 Jul 03; 185(7):355. PubMed ID: 29971570
    [Abstract] [Full Text] [Related]

  • 4. Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B.
    Su L, Wang S, Wang L, Yan Z, Yi H, Zhang D, Shen G, Ma Y.
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan 15; 225():117511. PubMed ID: 31513979
    [Abstract] [Full Text] [Related]

  • 5. Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO2 nanotube array co-sensitized with a nanocomposite prepared from polydopamine and Ag2S nanoparticles.
    Qin X, Geng L, Wang Q, Wang Y.
    Mikrochim Acta; 2019 Jun 11; 186(7):430. PubMed ID: 31187249
    [Abstract] [Full Text] [Related]

  • 6. Gold-nanoparticle-based fluorescent "turn-on" sensor for selective and sensitive detection of dimethoate.
    Hung SH, Lee JY, Hu CC, Chiu TC.
    Food Chem; 2018 Sep 15; 260():61-65. PubMed ID: 29699682
    [Abstract] [Full Text] [Related]

  • 7. A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk.
    Wang J, Lu T, Hu Y, Wang X, Wu Y.
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb 05; 226():117651. PubMed ID: 31629980
    [Abstract] [Full Text] [Related]

  • 8. An Ultrasensitive Label-Free Fluorescent Aptasensor Platform for Detection of Sulfamethazine.
    Wang Y, Yan X, Kou Q, Sun Q, Wang Y, Wu P, Yang L, Tang J, Le T.
    Int J Nanomedicine; 2021 Feb 05; 16():2751-2759. PubMed ID: 33859476
    [Abstract] [Full Text] [Related]

  • 9. Label free aptasensor for ultrasensitive detection of tobramycin residue in pasteurized cow's milk based on resonance scattering spectra and nanogold catalytic amplification.
    Yan S, Lai X, Wang Y, Ye N, Xiang Y.
    Food Chem; 2019 Oct 15; 295():36-41. PubMed ID: 31174769
    [Abstract] [Full Text] [Related]

  • 10. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate.
    Qu F, Sun C, Lv X, You J.
    Mikrochim Acta; 2018 Jul 05; 185(8):359. PubMed ID: 29978289
    [Abstract] [Full Text] [Related]

  • 11. Determination of adenosine triphosphate based on the use of fluorescent terbium(III) organic frameworks and aptamer modified gold nanoparticles.
    Sun C, Zhao S, Qu F, Han W, You J.
    Mikrochim Acta; 2019 Dec 09; 187(1):34. PubMed ID: 31814046
    [Abstract] [Full Text] [Related]

  • 12. A "turn-on" fluorescent sensor for ultrasensitive detection of melamine based on a new fluorescence probe and AuNPs.
    Lu Q, Zhao J, Xue S, Yin P, Zhang Y, Yao S.
    Analyst; 2015 Feb 21; 140(4):1155-60. PubMed ID: 25512948
    [Abstract] [Full Text] [Related]

  • 13. A fluorescent aptasensor based on gold nanoparticles quenching the fluorescence of rhodamine B to detect acetamiprid.
    Yu Y, Ye S, Sun Z, You J, Li W, Song Y, Zhang H.
    RSC Adv; 2022 Dec 06; 12(54):35260-35269. PubMed ID: 36540238
    [Abstract] [Full Text] [Related]

  • 14. A novel gold nanostars-based fluorescent aptasensor for aflatoxin B1 detection.
    Wei M, Zhao F, Xie Y.
    Talanta; 2020 Mar 01; 209():120599. PubMed ID: 31892078
    [Abstract] [Full Text] [Related]

  • 15. PVP-coated gold nanoparticles for the selective determination of ochratoxin A via quenching fluorescence of the free aptamer.
    Lv L, Jin Y, Kang X, Zhao Y, Cui C, Guo Z.
    Food Chem; 2018 May 30; 249():45-50. PubMed ID: 29407930
    [Abstract] [Full Text] [Related]

  • 16. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples.
    Hu X, Chang K, Wang S, Sun X, Hu J, Jiang M.
    PLoS One; 2018 May 30; 13(8):e0201626. PubMed ID: 30071096
    [Abstract] [Full Text] [Related]

  • 17. A time-resolved luminescence aptasensor of ofloxacin based on rolling circle amplification and magnetic separation.
    Huang Y, Wang C, Huo Q, Song Y, Du G, Wang L, Yang X, Chen X.
    Anal Bioanal Chem; 2020 Jul 30; 412(19):4555-4563. PubMed ID: 32472145
    [Abstract] [Full Text] [Related]

  • 18. Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor.
    Kumar P, Lambadi PR, Navani NK.
    Biosens Bioelectron; 2015 Oct 15; 72():340-7. PubMed ID: 26002019
    [Abstract] [Full Text] [Related]

  • 19. Optical and Electrochemical Aptasensors for Sensitive Detection of Streptomycin in Blood Serum and Milk.
    Ramezani M, Abnous K, Taghdisi SM.
    Methods Mol Biol; 2017 Oct 15; 1572():403-420. PubMed ID: 28299702
    [Abstract] [Full Text] [Related]

  • 20. A self-assembling RNA aptamer-based nanoparticle sensor for fluorometric detection of Neomycin B in milk.
    Ling K, Jiang H, Zhang L, Li Y, Yang L, Qiu C, Li FR.
    Anal Bioanal Chem; 2016 May 15; 408(13):3593-600. PubMed ID: 26942739
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.