These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


564 related items for PubMed ID: 31175214

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Modulation of auditory evoked responses to spectral and temporal changes by behavioral discrimination training.
    Draganova R, Wollbrink A, Schulz M, Okamoto H, Pantev C.
    BMC Neurosci; 2009 Dec 01; 10():143. PubMed ID: 19951416
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Neural Signatures of Auditory Perceptual Bistability Revealed by Large-Scale Human Intracranial Recordings.
    Curtu R, Wang X, Brunton BW, Nourski KV.
    J Neurosci; 2019 Aug 14; 39(33):6482-6497. PubMed ID: 31189576
    [Abstract] [Full Text] [Related]

  • 6. Sensory input directs spatial and temporal plasticity in primary auditory cortex.
    Kilgard MP, Pandya PK, Vazquez J, Gehi A, Schreiner CE, Merzenich MM.
    J Neurophysiol; 2001 Jul 14; 86(1):326-38. PubMed ID: 11431514
    [Abstract] [Full Text] [Related]

  • 7. Current source density profiles of stimulus-specific adaptation in rat auditory cortex.
    Szymanski FD, Garcia-Lazaro JA, Schnupp JW.
    J Neurophysiol; 2009 Sep 14; 102(3):1483-90. PubMed ID: 19571199
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Increased visual task difficulty enhances attentional capture by both visual and auditory distractor stimuli.
    Sugimoto F, Katayama J.
    Brain Res; 2017 Jun 01; 1664():55-62. PubMed ID: 28377160
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Two-stage processing of sounds explains behavioral performance variations due to changes in stimulus contrast and selective attention: an MEG study.
    Kauramäki J, Jääskeläinen IP, Hänninen JL, Auranen T, Nummenmaa A, Lampinen J, Sams M.
    PLoS One; 2012 Jun 01; 7(10):e46872. PubMed ID: 23071654
    [Abstract] [Full Text] [Related]

  • 13. Gamma oscillations in gerbil auditory cortex during a target-discrimination task reflect matches with short-term memory.
    Jeschke M, Lenz D, Budinger E, Herrmann CS, Ohl FW.
    Brain Res; 2008 Jul 18; 1220():70-80. PubMed ID: 18053969
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A comparison of neural responses in the primary auditory cortex, amygdala, and medial prefrontal cortex of cats during auditory discrimination tasks.
    Zhao Z, Ma L, Wang Y, Qin L.
    J Neurophysiol; 2019 Mar 01; 121(3):785-798. PubMed ID: 30649979
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Early cortical damage in rat somatosensory cortex alters acoustic feature representation in primary auditory cortex.
    Escabí MA, Higgins NC, Galaburda AM, Rosen GD, Read HL.
    Neuroscience; 2007 Dec 19; 150(4):970-83. PubMed ID: 18022327
    [Abstract] [Full Text] [Related]

  • 19. Task Engagement Improves Neural Discriminability in the Auditory Midbrain of the Marmoset Monkey.
    Shaheen LA, Slee SJ, David SV.
    J Neurosci; 2021 Jan 13; 41(2):284-297. PubMed ID: 33208469
    [Abstract] [Full Text] [Related]

  • 20. Coherent Activity between the Prelimbic and Auditory Cortex in the Slow-Gamma Band Underlies Fear Discrimination.
    Concina G, Cambiaghi M, Renna A, Sacchetti B.
    J Neurosci; 2018 Sep 26; 38(39):8313-8328. PubMed ID: 30093537
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.