These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 31176323

  • 1. Neural network based quasi-diabatic Hamiltonians with symmetry adaptation and a correct description of conical intersections.
    Guan Y, Guo H, Yarkony DR.
    J Chem Phys; 2019 Jun 07; 150(21):214101. PubMed ID: 31176323
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. On the representation of coupled adiabatic potential energy surfaces using quasi-diabatic Hamiltonians: a distributed origins expansion approach.
    Zhu X, Yarkony DR.
    J Chem Phys; 2012 May 07; 136(17):174110. PubMed ID: 22583213
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Enabling a Unified Description of Both Internal Conversion and Intersystem Crossing in Formaldehyde: A Global Coupled Quasi-Diabatic Hamiltonian for Its S0, S1, and T1 States.
    Guan Y, Xie C, Guo H, Yarkony DR.
    J Chem Theory Comput; 2021 Jul 13; 17(7):4157-4168. PubMed ID: 34132545
    [Abstract] [Full Text] [Related]

  • 11. Enabling complete multichannel nonadiabatic dynamics: A global representation of the two-channel coupled, 1,21A and 13A states of NH3 using neural networks.
    Wang Y, Guan Y, Guo H, Yarkony DR.
    J Chem Phys; 2021 Mar 07; 154(9):094121. PubMed ID: 33685133
    [Abstract] [Full Text] [Related]

  • 12. Constructing Diabatic Potential Energy Matrices with Neural Networks Based on Adiabatic Energies and Physical Considerations: Toward Quantum Dynamic Accuracy.
    Li C, Hou S, Xie C.
    J Chem Theory Comput; 2023 Jun 13; 19(11):3063-3079. PubMed ID: 37216273
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A diabatization method based upon integrating the diabatic potential gradient difference.
    Li F, Liu X, Ma H, Bian W.
    Phys Chem Chem Phys; 2024 Jun 12; 26(23):16477-16487. PubMed ID: 38656815
    [Abstract] [Full Text] [Related]

  • 17. Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems.
    Williams DMG, Eisfeld W.
    J Phys Chem A; 2020 Sep 17; 124(37):7608-7621. PubMed ID: 32786968
    [Abstract] [Full Text] [Related]

  • 18. On the nonadiabatic collisional quenching of OH(A) by H2: a four coupled quasi-diabatic state description.
    Malbon CL, Zhao B, Guo H, Yarkony DR.
    Phys Chem Chem Phys; 2020 Jun 24; 22(24):13516-13527. PubMed ID: 32538422
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.